Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleFEATURE

Nature-based solutions of soil management and agriculture

Rattan Lal
Journal of Soil and Water Conservation March 2022, 77 (2) 23A-29A; DOI: https://doi.org/10.2489/jswc.2022.0204A
Rattan Lal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

    1. Acreman, M.,
    2. A. Smith,
    3. L. Charters,
    4. D. Tickner,
    5. J. Opperman,
    6. S. Acreman,
    7. F. Edwards,
    8. P. Sayers, and
    9. F. Chivava
    . 2021. Evidence for the effectiveness of nature-based solutions to water issues in Africa. Environmental Research Letters 16(6):063007.
    OpenUrl
  1. ↵
    1. Andrikopoulou, T.,
    2. R.M.J. Schielen,
    3. C.J. Spray,
    4. C.A. Schipper, and
    5. A. Blom
    . 2021. A framework to evaluate the SDG contribution of fluvial nature-based solutions. Sustainability (Switzerland) 13(20):11320. https://doi.org/10.3390/su132011320.
    OpenUrl
  2. ↵
    1. Apollonio, C.,
    2. A. Petroselli,
    3. F. Tauro,
    4. M. Cecconi,
    5. C. Biscarini,
    6. C. Zarotti, and
    7. S. Grimaldi
    . 2021. Hillslope erosion mitigation: An experimental proof of a nature-based solution. Sustainability (Switzerland) 13(11):6058. https://doi.org/10.3390/su13116058.
    OpenUrl
    1. Aquije, C.,
    2. H.P. Schmidt,
    3. K. Draper,
    4. S. Joseph, and
    5. B. Ladd
    . 2021. Low tech biochar production could be a highly effective nature-based solution for climate change mitigation in the developing world. Plant and Soil (2021). https://doi.org/10.1007/s11104-021-05159-6.
  3. ↵
    1. Beierkuhnlein, C.
    2021. Nature-based solutions must be realized—not just proclaimed—in face of climatic extremes. Erdkunde 75(3):225–244.
    OpenUrl
  4. ↵
    1. Beyer, F.,
    2. F. Jansen,
    3. G. Jurasinski,
    4. M. Koch,
    5. B. Schröder, and
    6. F. Koebsch
    . 2021. Drought years in peatland rewetting: Rapid vegetation succession can maintain the net CO2 sink function. Biogeosciences 18(3):917–935.
    OpenUrl
    1. Boelee, E.,
    2. J. Janse,
    3. A. Le Gal,
    4. M. Kok,
    5. R. Alkemade, and
    6. W. Ligtvoet
    . 2017. Overcoming water challenges through nature-based solutions. Water Policy 19(5):820–836.
    OpenUrlAbstract/FREE Full Text
    1. Bradfer-Lawrence, T.,
    2. T. Finch,
    3. R.B. Bradbury,
    4. G.M. Buchanan,
    5. A. Midgley, and
    6. R.H. Field
    . 2021. The potential contribution of terrestrial nature-based solutions to a national “net zero” climate target. Journal of Applied Ecology 58(11):2349–2360.
    OpenUrl
    1. Bridgewater, P.
    2018. Whose nature? What solutions? Linking ecohydrology to nature-based solutions. Ecohydrology & Hydrobiology 18(4):311–316.
    OpenUrl
    1. Chausson, A.,
    2. B. Turner,
    3. D. Seddon,
    4. N. Chabaneix,
    5. C.A.J. Girardin,
    6. V. Kapos,
    7. I. Key, et al.
    2020. Mapping the effectiveness of nature-based solutions for climate change adaptation. Global Change Biology 26(11):6134–6155.
    OpenUrl
  5. ↵
    1. Collier, M.J.
    2021. Are field boundary hedgerows the earliest example of a nature-based solution? Environmental Science and Policy 120(2021):73–80.
    OpenUrl
    1. Collier, M.J., and
    2. M. Bourke
    . 2020. The case for mainstreaming nature-based solutions into integrated catchment management in Ireland. Biology and Environment-Proceedings of the Royal Irish Academy 120B(2):107–113.
    OpenUrl
  6. ↵
    1. Dekker, I.,
    2. S. Sharifyazd,
    3. E. Batung, and
    4. K. L. Dubrawski
    . 2021. Maximizing benefits to nature and society in techno-ecological innovation for water. Sustainability 13(11):6400. https://doi.org/10.3390/su13116400.
    OpenUrl
    1. Doelle, M., and
    2. T.G. Puthucherril
    . 2021. Nature-based solutions to sea level rise and other climate change impacts on oceanic and coastal environments: A law and policy perspective. Nordic Journal of Botany. https://doi.org/10.1111/njb.03051.
  7. ↵
    1. Faivre, N.,
    2. M. Fritz,
    3. T. Freitas,
    4. B. de Boissezon, and
    5. S. Vandewoestijne
    . 2017. Nature-based solutions in the EU: Innovating with nature to address social, economic and environmental challenges. Environmental Research 159(2017):509–518.
    OpenUrl
  8. ↵
    1. FAO and ITPS (Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils)
    . 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Rome, Italy: FAO and ITPS.
  9. ↵
    1. Fernandes, J.P., and
    2. N. Guiomar
    . 2018. Nature-based solutions: The need to increase the knowledge on their potentialities and limits. Land Degradation and Development 29(6):1925–1939.
    OpenUrl
  10. ↵
    1. N. Kabisch,
    2. H. Korn,
    3. J. Stadler, and
    4. A. Bonn
    1. Fritz, M.
    2017. Nature-based solutions to climate change adaptation in urban areas—Linkages between science, policy and practice. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice, eds. N. Kabisch, H. Korn, J. Stadler, and A. Bonn, 1–11. Cham, Switzerland: Springer.
  11. ↵
    1. Gallotti, G.,
    2. M.A. Santo,
    3. I. Apostolidou,
    4. J. Alessandri,
    5. A. Armigliato,
    6. B. Basu,
    7. S. Debele, et al.
    2021. On the management of nature-based solutions in open-air laboratories: New insights and future perspectives. Resources 10(4):36. https://doi.org/10.3390/resources10040036.
    OpenUrl
    1. Gooden, J., and
    2. R. Pritzlaff
    . 2021. Dryland watershed restoration with rock detention structures: A nature-based solution to mitigate drought, erosion, flooding, and atmospheric carbon. Frontiers in Environmental Science 9:679189. https://doi.org/10.3389/fenvs.2021.679189.
    OpenUrl
  12. ↵
    1. Hamidov, A., and
    2. K. Helming
    . 2020. Sustainability considerations in water-energy-food nexus research in irrigated agriculture. Sustainability (Switzerland) 12(15):6274. https://doi.org/10.3390/su12156274.
    OpenUrl
  13. ↵
    1. Han, S., and
    2. C. Kuhlicke
    . 2021. Barriers and drivers for mainstreaming nature-based solutions for flood risks: The case of South Korea. International Journal of Disaster Risk Science 12(5):661–672.
    OpenUrl
    1. Hernandez-Morcillo, M.,
    2. P. Burgess,
    3. J. Mirck,
    4. A. Pantera, and
    5. T. Plieninger
    . 2018. Scanning agroforestry-based solutions for climate change mitigation and adaptation in Europe. Environmental Science & Policy 80(2018):44–52.
    OpenUrl
  14. ↵
    1. Hewett, C.J.M.,
    2. M.E. Wilkinson,
    3. J. Jonczyk, and
    4. P.F. Quinn
    . 2020. Catchment systems engineering: An holistic approach to catchment management. Wiley Interdisciplinary Reviews: Water 7(3):e1417. https://doi.org/10.1002/wat2.1417.
    OpenUrl
  15. ↵
    1. Houle, D.,
    2. G. Lajoie, and
    3. L. Duchesne
    . 2016. Major losses of nutrients following a severe drought in a boreal forest. Nature Plants 2(12):16187.
    OpenUrl
  16. ↵
    1. Hovis, M.,
    2. J.C. Hollinger,
    3. F. Cubbage,
    4. T. Shear,
    5. B. Doll,
    6. J.J. Kurki-Fox,
    7. D. Line, et al.
    2021. Natural infrastructure practices as potential flood storage and reduction for farms and rural communities in the North Carolina coastal plain. Sustainability (Switzerland) 13(16):9309. https://doi.org/10.3390/su13169309.
    OpenUrl
  17. ↵
    1. Hoyos-Santillan, J.,
    2. A. Miranda,
    3. A. Lara,
    4. A. Sepulveda-Jauregui,
    5. C. Zamorano-Elgueta,
    6. S. Gómez-González,
    7. F. Vásquez-Lavín,
    8. R. D. Garreaud, and
    9. M. Rojas
    . 2021. Diversifying Chile’s climate action away from industrial plantations. Environmental Science and Policy 124(2021):85–89.
    OpenUrl
  18. ↵
    1. Hrabanski, M., and
    2. J.F. Le Coq
    . 2022. Climatisation of agricultural issues in the international agenda through three competing epistemic communities: Climate-smart agriculture, agroecology, and nature-based solutions. Environmental Science and Policy 127(2022):311–320.
    OpenUrl
  19. ↵
    1. S. Díaz,
    2. J. Settele,
    3. E.S. Brondízio,
    4. H.T. Ngo,
    5. M. Guèze,
    6. J. Agard,
    7. A. Arneth, et al.
    1. IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services)
    . 2019. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services, eds. S. Díaz, J. Settele, E.S. Brondízio, H.T. Ngo, M. Guèze, J. Agard, A. Arneth, et al. Bonn, Germany: IPBES Secretariat.
  20. ↵
    1. V. Masson-Delmotte,
    2. P. Zhai,
    3. H.-O. Pörtner,
    4. D. Roberts,
    5. J. Skea, and
    6. P.R. Shukla
    1. IPCC (Intergovernmental Panel on Climate Change)
    . 2018. Global Warming of 1.5°C: An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, eds. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, and P.R. Shukla. Geneva, Switzerland: IPCC.
  21. ↵
    1. Jerzy, Z.,
    2. S. Lukasz,
    3. Z. Anna,
    4. K. Kornelia, and
    5. B. Maksym
    . 2020. Water retention in nature-based solutions-assessment of potential economic effects for local social groups. Water 12(12):3347. https://doi.org/10.3390/w12123347.
    OpenUrl
    1. Kan, Z.R.,
    2. J.Y. Qi,
    3. Q.Y. Liu,
    4. C. He,
    5. A.L. Virk,
    6. R. Lal, and
    7. H.L. Zhang
    . 2020. Effects of conservation tillage on wheat growth duration and grain yield in the North China Plain. Archives of Agronomy and Soil Science. https://doi.org/10.1080/03650340.2020.1868039.
  22. ↵
    1. Keesstra, S.,
    2. J. Nunes,
    3. A. Novara,
    4. D. Finger,
    5. D. Avelar,
    6. Z. Kalantari, and
    7. A. Cerdà
    . 2018. The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment 610–611(2018):997–1009.
    OpenUrl
  23. ↵
    1. Keesstra, S.,
    2. S. Sannigrahi,
    3. M. Lopez-Vicente,
    4. M. Pulido,
    5. A. Novara,
    6. S. Visser, and
    7. Z. Kalantari
    . 2021. The role of soils in regulation and provision of blue and green water. Philosophical Transactions of the Royal Society B–Biological Sciences 376(1834). https://doi.org/10.1098/rstb.2020.0175.
  24. ↵
    1. Kiedrzyńska, E.,
    2. K. Belka,
    3. P. Jarosiewicz,
    4. M. Kiedrzyński, and
    5. M. Zalewski
    . 2021. The enhancement of valley water retentiveness in climate change conditions. Science of the Total Environment 799(2021):149427. https://doi.org/10.1016/j.scitotenv.2021.149427.
    OpenUrl
  25. ↵
    1. Kumar, P.,
    2. S.E. Debele,
    3. J. Sahani,
    4. L. Aragao,
    5. F. Barisani,
    6. B. Basu,
    7. E. Bucchignani, et al.
    2020. Towards an operationalisation of nature-based solutions for natural hazards. Science of the Total Environment 731(2020):138855. https://doi.org/10.1016/j.scitotenv.2020.138855.
    OpenUrl
  26. ↵
    1. Lal, R.
    2020. Home gardening and urban agriculture for advancing food and nutritional security in response to the COVID-19 pandemic. Food Security 12(4):871–876.
    OpenUrl
  27. ↵
    1. Lal, R.,
    2. J. Bouma,
    3. E. Brevik,
    4. L. Dawson,
    5. D.J. Field,
    6. B. Glaser,
    7. R. Hatano, et al.
    2021a. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Regional 25(June 2021):e00398.
    OpenUrl
  28. ↵
    1. Lal, R.,
    2. E.C. Brevik,
    3. L. Dawson,
    4. D. Field,
    5. B. Glaser,
    6. A.E. Hartemink,
    7. R. Hatano, et al.
    2020. Managing soils for recovering from the COVID-19 pandemic. Soil Systems 4(3):46.
    OpenUrl
  29. ↵
    1. Lal, R.,
    2. R.H. Mohtar,
    3. A.T. Assi,
    4. R. Ray,
    5. H. Baybil, and
    6. M. Jahn
    . 2017. Soil as a basic nexus tool: Soils at the center of the food–energy–water nexus. Current Sustainable/Renewable Energy Reports 4(3):117–129.
    OpenUrl
    1. Lal, R.,
    2. C. Monger,
    3. L. Nave, and
    4. P. Smith
    . 2021b. The role of soil in regulation of climate. Philosophical Transactions of the Royal Society B: Biological Sciences 376(1834):20210084.
    OpenUrl
  30. ↵
    1. Lefroy, E.C.,
    2. F. Flugge,
    3. A. Avery, and
    4. I. Hume
    . 2005. Potential of current perennial plant-based farming systems to deliver salinity management outcomes and improve prospects for native biodiversity: A review. Australian Journal of Experimental Agriculture 45(11):1357–1367.
    OpenUrl
  31. ↵
    1. Lehman, R.,
    2. C. Cambardella,
    3. D. Stott,
    4. V. Acosta-Martinez,
    5. D. Manter,
    6. J. Buyer,
    7. J. Maul, et al.
    2015. Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability 7(January 1, 2015):988–1027.
    OpenUrl
  32. ↵
    1. Mancuso, G.,
    2. G.F. Bencresciuto,
    3. S. Lavrnic, and
    4. A. Toscano
    . 2021. Diffuse water pollution from agriculture: A review of nature-based solutions for nitrogen removal and recovery. Water 13(14):1893. https://doi.org/10.3390/w13141893.
    OpenUrl
    1. Martin, E.G.,
    2. M.M. Costa,
    3. S. Egerer, and
    4. U.A. Schneider
    . 2021a. Assessing the long-term effectiveness of Nature-Based Solutions under different climate change scenarios. Science of the Total Environment 794(2021):148515. https://doi.org/10.1016/j.scitotenv.2021.148515.
    OpenUrl
    1. Martin, J.G.C.,
    2. A. Scolobig,
    3. J. Linnerooth-Bayer,
    4. W. Liu, and
    5. J. Balsiger
    . 2021b. Catalyzing innovation: Governance enablers of nature-based solutions. Sustainability 13(4):1971. https://doi.org/10.3390/su13041971.
    OpenUrl
  33. ↵
    1. Mayor, B.,
    2. P. Zorrilla-Miras,
    3. P. Le Coent,
    4. T. Biffin,
    5. K. Dartee,
    6. K. Pena,
    7. N. Graveline, et al.
    2021. Natural assurance schemes canvas: A framework to develop business models for nature-based solutions aimed at disaster risk reduction. Sustainability 13(3):1291. https://doi.org/10.3390/su13031291.
    OpenUrl
    1. Mickovski, S.B.
    2021. Re-thinking soil bio-engineering to address climate change challenges. Sustainability 13(6):3338. https://doi.org/10.3390/su13063338.
    OpenUrl
    1. Nelson, D.R.,
    2. B.P. Bledsoe,
    3. S. Ferreira, and
    4. N.P. Nibbelink
    . 2020. Challenges to realizing the potential of nature-based solution. Current Opinion in Environmental Sustainability 45(2020):49–55.
    OpenUrl
  34. ↵
    1. Osaka, S.,
    2. R. Bellamy, and
    3. N. Castree
    . 2021. Framing “nature-based” solutions to climate change. Wiley Interdisciplinary Reviews - Climate Change 12(5):e729. https://doi.org/10.1002/wcc.729.
    OpenUrl
  35. ↵
    1. Padma, P.,
    2. S. Ramakrishna, and
    3. S.M. Rasoolimanesh
    . 2019. Nature-based solutions in tourism: A review of the literature and conceptualization. Journal of Hospitality & Tourism Research (December 2, 2019):109634801989005.
    1. Panagopoulos, Y., and
    2. E. Dimitriou
    . 2020. A large-scale nature-based solution in agriculture for sustainable water management: The Lake Karla case. Sustainability 12(17):6761. https://doi.org/10.3390/su12176761.
    OpenUrl
  36. ↵
    1. N. Kabisch,
    2. H. Korn,
    3. J. Stadler, and
    4. A. Bonn
    1. Pauleit, S.,
    2. T. Zolch,
    3. R. Hansen,
    4. T.B. Randrup, and
    5. C.K. van den Bosch
    . 2017. Nature-based solutions and climate change - Four shades of green. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages Between Science, Policy And Practice, eds. N. Kabisch, H. Korn, J. Stadler, and A. Bonn, 29–49. Cham, Switzerland: Springer Open.
    1. Peter, B.G.,
    2. L.M. Mungai,
    3. J.P. Messina, and
    4. S.S. Snapp
    . 2017. Nature-based agricultural solutions: Scaling perennial grains across Africa. Environmental Research 159(2017):283–290.
    OpenUrl
    1. Plieninger, T.,
    2. J. Muñoz-Rojas,
    3. L.E. Buck, and
    4. S.J. Scherr
    . 2020. Agroforestry for sustainable landscape management. Sustainability Science 15(5):1255–1266.
    OpenUrl
  37. ↵
    1. Rey, F.
    2021. Harmonizing erosion control and flood prevention with restoration of biodiversity through ecological engineering used for co-benefits nature-based solutions. Sustainability 13(20):11150. https://doi.org/10.3390/su132011150.
    OpenUrl
  38. ↵
    1. Rocha, F.,
    2. M. E. Lucas-Borja,
    3. P. Pereira, and
    4. M. Muñoz-Rojas
    . 2020. Cyanobacteria as a nature-based biotechnological tool for restoring salt-affected soils. Agronomy 10(9):1321. https://doi.org/10.3390/agronomy10091321.
    OpenUrl
  39. ↵
    1. Seddon, N.,
    2. A. Chausson,
    3. P. Berry,
    4. C.A.J. Girardin,
    5. A. Smith, and
    6. B. Turner
    . 2020. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions of the Royal Society B-Biological Sciences 375(1794). https://doi.org/10.1098/rstb.2019.0120.
    1. Seifollahi-Aghmiuni, S.,
    2. M. Nockrach, and
    3. Z. Kalantari
    . 2019. The potential of wetlands in achieving the Sustainable Development Goals of the 2030 Agenda. Water 11(3):609.
    OpenUrl
  40. ↵
    1. Sowinska-Swierkosz, B.,
    2. J. Wojcik-Madej, and
    3. M. Michalik-Sniezek
    . 2021. An assessment of the Ecological Landscape Quality (ELQ) of Nature-Based Solutions (NBS) based on existing elements of Green and Blue Infrastructure (GBI). Sustainability 13(21):11674. https://doi.org/10.3390/su132111674.
    OpenUrl
  41. ↵
    1. Spyrou, C.,
    2. M. Loupis,
    3. N. Charizopoulos,
    4. I. Apostolidou,
    5. A. Mentzafou,
    6. G. Varlas,
    7. A. Papadopoulos, et al.
    2021. Evaluating nature-based solution for flood reduction in spercheios river basin under current and future climate conditions. Sustainability (Switzerland) 13(7):3885. https://doi.org/10.3390/su13073885.
    OpenUrl
  42. ↵
    1. Taillardat, P.,
    2. B.S. Thompson,
    3. M. Garneau,
    4. K. Trottier, and
    5. D.A. Friess
    . 2020. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10(5). https://doi.org/10.1098/rsfs.2019.0129.
    1. Tanneberger, F.,
    2. L. Appulo,
    3. S. Ewert,
    4. S. Lakner,
    5. N.O. Brolchain,
    6. J. Peters, and
    7. W. Wichtmann
    . 2021. The power of nature-based solutions: How peatlands can help us to achieve key EU sustainability objectives. Advanced Sustainable Systems 5(1). https://doi.org/10.1002/adsu.202000146.
    1. Teo, H.C.,
    2. Y.W. Zeng,
    3. T.V Sarira,
    4. T.K. Fung,
    5. Q.M. Zheng,
    6. X.P. Song,
    7. K.Y. Chong, and
    8. L.P. Koh
    . 2021. Global urban reforestation can be an important natural climate solution. Environmental Research Letters 16(3):034059. https://doi.org/10.1088/1748-9326/abe783.
    OpenUrl
    1. Thorslund, J.,
    2. J. Jarsjo,
    3. F. Jaramillo,
    4. J.W. Jawitz,
    5. S. Manzoni,
    6. N.B. Basu,
    7. S.R. Chalov, et al.
    2017. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecological Engineering 108(2017):489–497.
    OpenUrl
  43. ↵
    1. Triest, L.,
    2. I. Stiers, and
    3. S. Van Onsem
    . 2016. Biomanipulation as a nature-based solution to reduce cyanobacterial blooms. Aquatic Ecology 50(3):461–483.
    OpenUrl
    1. Turkelboom, F.,
    2. R. Demeyer,
    3. L. Vranken,
    4. P. De Becker,
    5. F. Raymaekers, and
    6. L. De Smet
    . 2021. How does a nature-based solution for flood control compare to a technical solution? Case study evidence from Belgium. AMBIO 50(8):1431–1445.
    OpenUrl
  44. ↵
    1. UN (United Nations)
    . 2021. United Nations Food System Summit. https://www.unfoodsystems.org/.
    1. Van Cauwenbergh, N.,
    2. P.A. Dourojeanni,
    3. P. van der Zaag,
    4. M. Brugnach,
    5. K. Dartee,
    6. R. Giordano, and
    7. E. Lopez-Gunn
    . 2022. Beyond TRL-Understanding institutional readiness for implementation of nature-based solutions. Envrionmental Science and Policy 127(2022):293–302.
    OpenUrl
    1. Van Noordwijk, M.
    2021. Agroforestry-based ecosystem services: Reconciling values of humans and nature in sustainable development. Land 10(7):699. https://doi.org/10.3390/land10070699.
    OpenUrl
  45. ↵
    1. Vörösmarty, C.J.,
    2. V. Rodríguez Osuna,
    3. A.D. Cak,
    4. A. Bhaduri,
    5. S.E. Bunn,
    6. F. Corsi,
    7. J. Gastelumendi, et al.
    2018. Ecosystem-based water security and the Sustainable Development Goals (SDGs). Ecohydrology and Hydrobiology 18(4):317–333.
    OpenUrl
    1. Wamsler, C.,
    2. B. Wickenberg,
    3. H. Hanson,
    4. J.A. Olsson,
    5. S. Stalhammar,
    6. H. Bjorn,
    7. H. Falck, et al.
    2020. Environmental and climate policy integration: Targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation. Journal of Cleaner Production 247(2020):119-154.
    OpenUrl
  46. ↵
    1. Welden, E.A.,
    2. A. Chausson, and
    3. M.S. Melanidis
    . 2021. Leveraging nature-based solutions for transformation: Reconnecting people and nature. People and Nature 3(5):966–977.
    OpenUrl
    1. Wolz, K.J.,
    2. S.T. Lovell,
    3. B.E. Branham,
    4. W.C. Eddy,
    5. K. Keeley,
    6. R.S. Revord,
    7. M.M. Wander,
    8. W.H. Yang, and
    9. E.H. DeLucia
    . 2018. Frontiers in alley cropping: Transformative solutions for temperate agriculture. Global Change Biology 24(3):883–894.
    OpenUrl
    1. Wong, J.W.C., and
    2. U.O. Ogbonnaya
    . 2021. Biochar porosity: A nature-based dependent parameter to deliver microorganisms to soils for land restoration. Environmental Science and Pollution Research 28(34):46894–46909.
    OpenUrl
    1. V. Singh,
    2. S. Yadav, and
    3. R. Yadava
    1. Yadav, R.C.
    2018. Development of universal ultimate total green chemistry and eco-agriculture for sustainable productivity. In Water Resoures Management, eds. V. Singh, S. Yadav, and R. Yadava. Water Science and Technology Library, vol. 78. Singapore: Springer. https://doi.org/10.1007/978-981-10-5711-3_4.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 77 (2)
Journal of Soil and Water Conservation
Vol. 77, Issue 2
March/April 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Nature-based solutions of soil management and agriculture
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Nature-based solutions of soil management and agriculture
Rattan Lal
Journal of Soil and Water Conservation Mar 2022, 77 (2) 23A-29A; DOI: 10.2489/jswc.2022.0204A

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Nature-based solutions of soil management and agriculture
Rattan Lal
Journal of Soil and Water Conservation Mar 2022, 77 (2) 23A-29A; DOI: 10.2489/jswc.2022.0204A
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • INTRODUCTION TO NATURE-BASED SOLUTIONS
    • SOIL-BASED ECOSYSTEM SERVICES
    • SOIL QUALITY AND FUNCTIONALITY
    • WATER QUALITY AND RENEWABILITY
    • ADAPTATION AND MITIGATION OF CLIMATE CHANGE
    • SALINITY MANAGEMENT
    • HUMAN HEALTH, WELLBEING, AND FOOD SECURITY
    • IMPLEMENTING NATURE-BASED SOLUTIONS
    • CONCLUSIONS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • To protect and conserve: Fifty years of Nebraska’s Natural Resources Districts
  • Comparing cover crop use by horticultural and commodity producers
Show more Feature

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society