Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Crop residue cover dynamics for wind erosion control in a dryland, no-till system

C. Schnarr, M. Schipanski and J. Tatarko
Journal of Soil and Water Conservation May 2022, 77 (3) 221-229; DOI: https://doi.org/10.2489/jswc.2022.00005
C. Schnarr
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Schipanski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Tatarko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Borrelli, P.,
    2. C. Ballabio,
    3. P. Panagos, and
    4. L. Montanarella
    . 2014. Wind erosion susceptibility of European soils. Geoderma 232-234:471–478.
    OpenUrl
  2. ↵
    1. Cantero-Martinez, C.,
    2. D.G. Westfall,
    3. L.A. Sherrod, and
    4. G.A. Peterson
    . 2006. Long-term crop residue dynamics in no-till cropping systems under semi-arid conditions. Journal of Soil and Water Conservation 61(2):84–95.
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Chen, W.,
    2. S. Leblanc, and
    3. G. Henry
    . 2010. Digital photograph analysis for measuring percent plant cover in the Arctic. Arctic 63(3):315–326.
    OpenUrl
  4. ↵
    1. Derpsch, R.,
    2. T. Friedrich,
    3. A. Kassam, and
    4. L. Hongwen
    . 2010. Current status of adoption of no-till farming in the world and some of its main benefits. International Journal of Agricultural and Biological Engineering 3:11.
    OpenUrl
  5. ↵
    1. Dregne, H.E.
    2002. Land degradations in the drylands. Arid Land Research and Management 16(2):9–132.
    OpenUrl
  6. ↵
    1. Farahani, H.J.,
    2. G.A. Peterson, and
    3. D. Westfall
    . 1998. Dryland cropping intensification: A fundamental solution to efficient use of precipitation. Advances in Agronomy 64:197–223.
    OpenUrl
  7. ↵
    1. Fryrear, D.W.
    1985. Soil cover and wind erosion. Transactions of the ASAE 28(3):781–784.
    OpenUrlWeb of Science
  8. ↵
    1. Gao, Y.,
    2. X. Dang,
    3. Y. Yu,
    4. Y. Li,
    5. Y. Liu, and
    6. J. Wang
    . 2016. Effects of tillage methods on soil carbon and wind erosion. Land Degradation and Development 27:583–591.
    OpenUrl
  9. ↵
    1. Gilmour, J.T.,
    2. R.J. Norman,
    3. A. Mauromoustakos, and
    4. P.A. Gale
    . 1998. Kinetics of crop residue decomposition: Variability among crops and years. Soil Science Society of America Journal 62:750–751.
    OpenUrl
  10. ↵
    1. Hagen, L.J.
    1996. Crop residue effects on aerodynamic processes and wind erosion. Theoretical and Applied Climatology 54(1-2):39–46.
    OpenUrl
  11. ↵
    1. Hansen, N.C.,
    2. B.L. Allen,
    3. R.L. Baumhardt, and
    4. D.J. Lyon
    . 2012. Research achievements and adoption of no-till cropping in the semi-arid U.S. Great Plains. Field Crops Research 132:196–203.
    OpenUrl
  12. ↵
    1. Iowa Environmental Mesonet
    . 2021. Information/Documents. Ames, IA: Iowa State University. http://mesonet.agron.iastate.edu/info.php.
  13. ↵
    1. Johnson, J.M.F.,
    2. N.W. Barbour, and
    3. S.L. Weyers
    . 2007. Chemical composition of crop biomass impacts its decomposition. Soil Science Society of America Journal 71(1):155–162.
    OpenUrlCrossRefWeb of Science
  14. ↵
    1. Lee, J.A., and
    2. T.E. Gill
    . 2015. Multiple causes of wind erosion in the Dust Bowl. Aeolian Research 10:15–36.
    OpenUrl
  15. ↵
    1. Lobet, G.,
    2. X. Draye, and
    3. C. Périlleux
    . 2013. An online database for plant image analysis software tools. Plant Methods 9:38.
    OpenUrlCrossRefPubMed
  16. ↵
    1. Lopez, M.V.,
    2. D. Moret,
    3. R. Garcia, and
    4. J.L. Arrue
    . 2003. Tillage effects on barley residue cover during fallow in semi-arid Aragon. Soil and Tillage Research 72(1):53–64.
    OpenUrl
  17. ↵
    1. Lyles, L., and
    2. B.E. Allison
    . 1981. Equivalent wind erosion protection from selected crop residues. Transactions of the ASAE 24(2):405–408.
    OpenUrlWeb of Science
  18. ↵
    1. Lyon, D.J., and
    2. J.A. Smith
    . 2010. Wind erosion and its control. University of Nebraska Lincoln Extension, Institute of Agriculture and Natural resources Publication G1537. Lincoln, NE: University of Nebraska Lincoln Extension.
  19. ↵
    1. Peterson, G.A.,
    2. D.G. Westfall,
    3. F.B. Peairs,
    4. L. Sherrod,
    5. D. Poss,
    6. W. Gangloff,
    7. K. Larson,
    8. D.L. Thompson,
    9. L.R. Ahuja,
    10. M.D. Koch, and
    11. C.B. Walker
    . 2001. Sustainable dryland agroecosystem management. USDA Agricultural Research Service Technical Bulletin TB01-2. Washington, DC: USDA ARS.
  20. ↵
    1. Ravi, S.,
    2. D.D. Breshears,
    3. T.E. Huxman, and
    4. P. D’Odorico
    . 2010. Land degradation indrylands: Interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology 116(3-4):236–245.
    OpenUrlGeoRef
  21. ↵
    1. Ravi, S.,
    2. P. D’Odorico,
    3. D.D. Breshears,
    4. J.P. Field,
    5. A.S. Goudie,
    6. T.E. Huxman, and
    7. T.M. Zobeck
    . 2011. Aeolian processes and the biosphere. Reviews of Geophysics 49(3).
  22. ↵
    1. Rosenzweig, S.,
    2. S. Fonte, and
    3. M. Schipanski
    . 2018. Intensifying rotations increases soilcarbon, fungi, and aggregation in semi-arid agroecosystems. Agriculture, Ecosystems, & Environment 258:14–22.
    OpenUrl
  23. ↵
    1. Ruffo, M.L., and
    2. G.A. Bollero
    . 2003. Modeling rye and hairy vetch residue decomposition as a function of degree-days and decomposition-days. Agronomy Journal 95(4):900–907.
    OpenUrlWeb of Science
  24. ↵
    1. Schomberg, H.H.,
    2. J.L. Steiner,
    3. S.R. Evett, and
    4. A.P. Moulin
    . 1996. Climatic influence on residue decomposition prediction in the Wind Erosion Prediction System. Theoretical and Applied Climatology 54(1-2):5–16.
    OpenUrl
  25. ↵
    1. Sherrod, L.A.,
    2. G.A. Peterson,
    3. D.G. Westfall, and
    4. L.R. Ahuja
    . 2003. Cropping intensity enhances soil organic carbon and nitrogen in a no-till agroecosystem. Soil Science Society of America 67(5):1533–1543.
    OpenUrl
  26. ↵
    1. Steiner, J.L.,
    2. H.H. Schomberg,
    3. C.L. Douglas Jr.., and
    4. A.L. Black
    . 1994. Standing stem persistence in no-tillage small-grain fields. Agronomy Journal 86(1):76–81.
    OpenUrl
  27. ↵
    1. Steiner, J.L.,
    2. H.H. Schomberg,
    3. P.W. Unger, and
    4. J. Cresap
    . 1999. Crop residue decomposition in no-tillage small-grain fields. Soil Science Society of America Journal 63:1817.
    OpenUrlWeb of Science
  28. ↵
    1. Steiner, J.L.,
    2. H.H. Schomberg,
    3. P.W. Unger, and
    4. J. Cresap
    . 2000. Biomass and residue cover relationships of fresh and decomposing small grain residue. Soil Science Society of America Journal 64(6):2109–2114.
    OpenUrlWeb of Science
  29. ↵
    1. Triplett, G.B., and
    2. W.A. Dick
    . 2008. No-tillage crop production: A revolution in agriculture! Agronomy Journal 100:3 Supplement:S153–S165.
    OpenUrl
  30. ↵
    1. M.R. Carter
    1. Unger, P.W., and
    2. E.L. Skidmore
    . 1994. Conservation tillage in the Southern United States Great Plains. In Conservation Tillage in Temperate Ecosystems, ed. M.R. Carter, 329–356. Boca Raton, FL: Lewis Publishers.
  31. ↵
    1. USEPA (US Environmental Protection Agency)
    . 2003. National Management Measures to Control Nonpoint Source Pollution from Agriculture. US Environmental Protection Agency Publication EPA-841-B-03-004. Washington, DC: USEPA.
  32. ↵
    1. J. Tatarko
    1. USDA ARS (Agricultural Research Service)
    . 2020. The Wind Erosion Prediction System (WEPS): Technical Documentation, ed. J. Tatarko, 533. USDA Agriculture Handbook 727. Beltsville, MD: USDA ARS. https://naldc.nal.usda.gov/catalog/7105679
  33. ↵
    1. USDA
    . 2020. Summary Report: 2017 National Resources Inventory. Washington, DC, and Ames, IA: Natural Resources Conservation Service and Center for Survey Statistics and Methodology, Iowa State University. https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/nri/results/
  34. ↵
    1. Vanha-Majamaa, I.,
    2. M. Salemaa,
    3. S. Touminen, and
    4. K. Mikkola
    . 2000. Digitized photographs in vegetation analysis: A comparison of cover estimates. Applied Vegetation Science 3(1):89094.
    OpenUrl
  35. ↵
    1. Xu, Y.,
    2. Z. Chen,
    3. S. Fontaine,
    4. W. Wang,
    5. J. Luo,
    6. J. Fan, and
    7. W. Ding
    . 2017. Dominant effects of organic carbon chemistry on decomposition dynamics of crop residues in a Mollisol. Soil Biology and Biochemistry 115:221–232.
    OpenUrl
  36. ↵
    1. Yu, K.,
    2. N. Kirchgessner,
    3. C. Grieder,
    4. A. Walter, and
    5. A. Hund
    . 2017. An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping. Plant Methods 13:15.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 77 (3)
Journal of Soil and Water Conservation
Vol. 77, Issue 3
May/June 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Crop residue cover dynamics for wind erosion control in a dryland, no-till system
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 10 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Crop residue cover dynamics for wind erosion control in a dryland, no-till system
C. Schnarr, M. Schipanski, J. Tatarko
Journal of Soil and Water Conservation May 2022, 77 (3) 221-229; DOI: 10.2489/jswc.2022.00005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Crop residue cover dynamics for wind erosion control in a dryland, no-till system
C. Schnarr, M. Schipanski, J. Tatarko
Journal of Soil and Water Conservation May 2022, 77 (3) 221-229; DOI: 10.2489/jswc.2022.00005
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Management of nutrient export from diffuse sources in watersheds for environmental protection under uncertainty
Show more Research Section

Similar Articles

Keywords

  • forage
  • residue decomposition
  • semiarid cropping systems
  • soil surface cover
  • wheat

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society