Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Spatial and agronomic assessment of water erosion on inland Pacific Northwest cereal grain cropland

M. Samrat Dahal, J.Q. Wu, J. Boll, R.P. Ewing and A. Fowler
Journal of Soil and Water Conservation July 2022, 77 (4) 347-364; DOI: https://doi.org/10.2489/jswc.2022.00091
M. Samrat Dahal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.Q. Wu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Boll
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.P. Ewing
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Fowler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Ayalew, H.,
    2. T.T. Kumssa,
    3. T. Butler, and
    4. X.-F. Ma
    . 2018. Triticale improvement for forage and cover crop uses in the southern Great Plains of the United States. Front Plant Science 9:1130. https://doi.org/10.3389/fpls.2018.01130.
    OpenUrl
  2. ↵
    1. Boll, J.,
    2. E.S. Brooks,
    3. B. Crabtree,
    4. S. Dun, and
    5. T.S. Steenhuis
    . 2015. Variable source area hydrology modeling with the Water Erosion Prediction Project model. Journal of the American Water Resources Association 51:330–342.
    OpenUrl
  3. ↵
    1. Brooks, E.S.,
    2. S.M. Saia,
    3. J. Boll,
    4. L. Wetzel,
    5. Z.M. Easton, and
    6. T.S. Steenhuis
    . 2015. Assessing BMP effectiveness and guiding BMP planning using process-based modeling. Journal of American Water Resources Association 51:343–358.
    OpenUrl
  4. ↵
    1. Busacca, A.J.
    1989. Long quaternary record in eastern Washington, U.S.A. interpreted from multiple buried paleosols in loess. Geoderma 45:105–122.
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Cochran, V.L.,
    2. L.F. Elliott, and
    3. R.I. Papendick
    . 1982. Effect of crop residue management and tillage on water use efficiency and yield of winter wheat. Agronomy Journal 74:929–932.
    OpenUrl
  6. ↵
    1. DiNezio, P.N.,
    2. C. Deser,
    3. Y. Okumura, and
    4. A. Karspeck
    . 2017. Predictability of 2-year La Niña events in a coupled General Circulation Model. Climate Dynamics 49:4237–4261. https://doi.org/10.1007/s00382-017-3575-3.
    OpenUrl
  7. ↵
    1. Domenico, P.A., and
    2. F.W. Schwartz
    . 1997. Hydraulic conductivity and permeability of geologic materials. In Physical and Chemical Hydrogeology. New York: John Wiley & Sons Inc.
  8. ↵
    1. Dun, S.,
    2. J.Q. Wu,
    3. W.J. Elliot,
    4. P.R. Robichaud,
    5. D.C. Flanagan,
    6. J.R. Frankenberger,
    7. R.E. Brown, and
    8. A.C. Xu
    . 2009. Adapting the Water Erosion Prediction Project (WEPP) model for forest applications. Journal of Hydrology 366:46–54.
    OpenUrlGeoRef
  9. ↵
    1. Dun, S.,
    2. J.Q. Wu,
    3. D.K. McCool,
    4. J.R. Frankenberger, and
    5. D.C. Flanagan
    . 2010. Improving frost simulation subroutines of the Water Erosion Prediction Project (WEPP) model. Transactions of the ASABE 53:1399–1411.
    OpenUrl
    1. ESRI (Environmental Systems Research Institute)
    . 2019. ArcGIS Desktop: Release 10.7.1. Redlands, CA: Environmental Systems Research Institute.
    1. Flanagan, D.C., and
    2. S.J. Livingston
    , ed. 1995. USDA-Water Erosion Prediction Project User Summary. National Soil Erosion Research Laboratory Report No. 11. West Lafayette, IN: USDA Agricultural Research Service, National Soil Erosion Research Laboratory.
    1. Flanagan, D.C., and
    2. M.A. Nearing
    , ed. 1995. USDA-Water Erosion Prediction Project Hillslope Profile and Watershed Model Documentation. National Soil Erosion Research Laboratory Report No. 10. West Lafayette, IN: USDA ARS National Soil Erosion Research Laboratory.
  10. ↵
    1. Ghimire, R.,
    2. B. Ghimire,
    3. A.O. Mesbah,
    4. O.J. Idowu,
    5. M.K. O’Neill,
    6. S.V. Angadi, and
    7. M.K. Shukla
    . 2018. Current status, opportunities and challenges of cover cropping for sustainable dryland farming in the Southern Great Plains. Journal of Crop Improvement 32:579–598.
    OpenUrl
  11. ↵
    1. Greer, R.C.,
    2. J.Q. Wu,
    3. P. Singh, and
    4. D.K. McCool
    . 2006. WEPP simulation of observed winter runoff and erosion in the Pacific Northwest, USA. Vadose Zone Journal 5:261–272.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Hill, W.W., and
    2. V.G. Kaiser
    . 1965. Method of measuring soil erosion losses: Rill and sheet erosion. Soil Survey Technical Notes: 13–14. Washington, DC: USDA Soil Conservation Service.
  13. ↵
    1. Hudson, N.
    1993. Field measurement of soil erosion and runoff. Soils Bulletin 68. Rome: Food and Agricultural Organization of the United Nations.
  14. ↵
    1. K. Borrelli,
    2. D.D. Laursen,
    3. S. Eigenbrode,
    4. B. Mahler, and
    5. R. Pepper
    1. Huggins, D.,
    2. B. Pan,
    3. W. Schillinger,
    4. F. Young,
    5. S. Machado, and
    6. K. Painter
    . 2015. Crop diversity and intensity in Pacific Northwest dryland cropping systems. In Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH PNA)–Climate Science Northwest Farmers Can Use, ed. K. Borrelli, D.D. Laursen, S. Eigenbrode, B. Mahler, and R. Pepper. Moscow, ID: REACCH PNA. www.reacchpna.org.
  15. ↵
    1. G. Yorgey and
    2. C. Kruger
    1. Kirby, E.M.,
    2. W.L. Pan,
    3. D.R. Huggins,
    4. K.M. Painter, and
    5. P. Bista
    . 2017. Rotational diversification and intensification. In Advances in Dryland Farming in the Inland Pacific Northwest, ed. G. Yorgey and C. Kruger, 163–236. Pullman, WA: Washington State Extension Publication EM108–05.
  16. ↵
    1. Kok, H.,
    2. R.I. Papendick, and
    3. K.E. Saxton
    . 2009. STEEP: Impact of long-term conservation farming research and education in Pacific Northwest Wheatlands. Journal of Soil and Water Conservation 64(4):253–264. https://doi.org/10.2489/jswc.64.4.253.
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Kottek, M.,
    2. J. Grieser,
    3. C. Beck,
    4. B. Rudolf, and
    5. F. Rubel
    . 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15:259–263. doi:10.1127/0941-2948/2006/0130.
    OpenUrlCrossRef
  18. ↵
    1. Lal, R.
    1998. Soil erosion impact on agronomic productivity and environment quality. Critical Reviews in Plant Science 17:319–464.
    OpenUrlCrossRef
  19. ↵
    1. W.L. Hargrove
    1. Langdale, G.W.,
    2. R.L. Blevins,
    3. D.L. Karlen,
    4. D.K. McCool,
    5. M.A. Nearing,
    6. E.L. Skidmore,
    7. A.W. Thomas,
    8. D.D. Tyler, and
    9. J.R. Williams
    . 1991. Cover crop effects on soil erosion by wind and water. In Cover Crops for Clean Water, ed. W.L. Hargrove, 15–21. Ankeny, IA: Soil and Water Conservation Society.
  20. ↵
    1. Matsuura, K.,
    2. C. Willmott, and
    3. D. Legates
    . 2021. WebWIMP v.1.02. https://davinci.geog.udel.edu/~wimp/.
  21. ↵
    1. McCool, D.K., and
    2. R.D. Roe
    . 2005. Long-term erosion trends on cropland in the Pacific Northwest. Presented at American Society of Agricultural Engineering Annual Meeting. Paper number: PNW05–1002. St Joseph, MI: American Society of Agricultural Engineers.
  22. ↵
    1. G.R. Foster
    1. Meyer, L.D.
    1982. Soil erosion research leading to development of the universal soil loss equation. In Proceedings of Workshop on Estimating Erosion and Sediment Yield on Rangelands, ed. G.R. Foster, 1–16. Washington, DC: USDA Agricultural Research Service.
  23. ↵
    1. Montanarella, L.
    2015. Agricultural policy: Govern our soils. Nature 528:32–33.
    OpenUrlCrossRefPubMed
  24. ↵
    1. Montgomery, D.R.
    2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America 104:13268–13272.
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Mulla, D.J.,
    2. A.S. Birr,
    3. N.R. Kitchen, and
    4. M.B. David
    . 2008. Limitations of evaluating the effectiveness of agricultural management practices at reducing nutrient losses to surface waters. In American Society of Agricultural and Biological Engineers, Final Report: Gulf Hypoxia and Local Water Quality Concerns Workshop, 189–212. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
    1. NCDC (National Climatic Data Center)
    . 2018. NOAA satellite and information service. Asheville, NC: NCDC. https://www.ncdc.noaa.gov/cdo-web/.
  26. ↵
    1. D.C. Flanagan and
    2. M.A. Nearing
    1. Nicks, A.D.,
    2. L.J. Lane, and
    3. G.A. Gander
    . 1995. Weather generator. In USDA-Water Erosion Prediction Project: Hillslope profile and watershed model documentation, ed. D.C. Flanagan and M.A. Nearing, 2.1–2.22. NSERL
  27. ↵
    1. Nielsen, D.C.,
    2. D.J. Lyon, and
    3. J.J. Miceli-Garcia
    . 2017. Replacing fallow with forage triticale in a dryland wheat-corn-fallow rotation may increase profitability. Field Crops Research 203:227–237. doi:10.1016/j.fcr.2016.12.005.
    OpenUrlCrossRef
  28. ↵
    1. Oldenstadt, D.L.,
    2. R.E. Allan,
    3. G.W. Bruehl,
    4. D.A. Dillman,
    5. E.L. Michalson,
    6. R.I. Papendick, and
    7. D.J. Rydrych
    . 1982. Solutions to Environmental and Economic Problems (STEEP). Science 217:904–909.
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. R.I. Papendick and
    2. W.C. Moldenhauer
    1. Papendick, R.I.,
    2. F.L. Young,
    3. K.S. Pike, and
    4. R.J. Cook
    . 1995. Description of the region. In Crop Residue Management to Reduce Erosion and Improve Soil Quality: Northwest, CRR-40, ed. R.I. Papendick and W.C. Moldenhauer. Washington, DC: USDA ARS.
  30. ↵
    1. Pieri, L.,
    2. M. Bittelli,
    3. J.Q. Wu,
    4. S. Dun,
    5. D.C. Flanagan,
    6. P.R. Pisa,
    7. F. Ventura, and
    8. F. Salvatorelli
    . 2007. Using the Water Erosion Prediction Project (WEPP) Model to simulate field-observed runoff and erosion in the Apennines Mountain Range, Italy. Journal of Hydrology 336:84–97.
    OpenUrlGeoRef
  31. ↵
    1. Shepherd, J.F.
    1985. Soil conservation in the Pacific Northwest wheat-producing areas: Conservation in a hilly terrain. Agricultural History 59:229–245.
    OpenUrl
  32. ↵
    1. Singh, V.P.
    1995. Computer Models of Watershed Hydrology. Water Resources Publications, Highlands Ranch, CO: Water Resources Publications.
  33. ↵
    1. Singh, P.,
    2. J.Q. Wu,
    3. D.K. McCool,
    4. S. Dun, C.-
    5. H. Lin, and
    6. J.R. Morse
    . 2009. Winter hydrological and erosion processes in the US Palouse region: Field experimentation and WEPP simulation. Vadose Zone Journal 8:426–436.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. C. Ditzler,
    2. K. Scheffe, and
    3. H.C. Monger
    1. Soil Science Division Staff
    . 2017. Soil Survey Manual. In USDA Handbook 18, ed. C. Ditzler, K. Scheffe, and H.C. Monger. Washington, DC: Government Printing Office. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054262.
  35. ↵
    1. Soil Survey Staff
    . 2019. Web Soil Survey. Washington, DC: USDA Natural Resources Conservation Service. http://websoilsurvey.sc.egov.usda.gov/.
  36. ↵
    1. Tang, Y.,
    2. R.H. Zhang,
    3. T. Liu,
    4. W. Duan,
    5. D. Yang,
    6. E. Zheng,
    7. H. Ren,
    8. T. Lian,
    9. C. Gao,
    10. D. Chen, and
    11. M. Mu
    . 2018. Progress in ENSO prediction and predictability study. National Science Review 5:826–839. https://doi.org/10.1093/nsr/nwy105.
    OpenUrl
  37. ↵
    1. Taylor, G.H.
    1998. Impacts of the El Niño Southern Oscillation on the Pacific Northwest. Oregon Geology 60:51–56. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.643.1390&rep=rep1&type=pdf#page=51.
    OpenUrlGeoRef
  38. ↵
    1. USDA
    . 1978. Palouse Cooperative River Basin Study. Washington, DC: USDA Soil Conservation Service, Forest Service, and Economics, Statistics, and Cooperative Service.
  39. ↵
    1. USDA
    . 2020. Summary Report: 2017 National Resources Inventory. Washington, DC, and Ames, IA: Natural Resources Conservation Service, and Center for Survey Statistics and Methodology, Iowa State University.
    1. USDA NASS (National Agricultural Statistics Service)
    . 2017. Census of Agriculture. Washington, DC: USDA NASS. www.nass.usda.gov/AgCensus.
  40. ↵
    1. USDA NASS
    . 2018. 2018 Washington Cropland Data Layer. Washington, DC: USDA NASS. https://nassgeodata.gmu.edu/CropScape/.
    1. USDA NRCS (USDA Natural Resources Conservation Service)
    . 2020. Honoring 85 Years of NRCS–A Brief History. Washington, DC: USDA NRCS. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/about/history/?cid=nrcs143_02132.
    1. USGS (US Geological Survey)
    . 2019. USGS NED 1 arcsecond ArcGrid 2019. Reston, VA: USGS. https://apps.nationalmap.gov/downloader/.
  41. ↵
    1. Van Klaveren, R.W., and
    2. D.K. McCool
    . 1998. Erodibility and critical shear of a previously frozen soil. Transactions of the ASAE 41:1315–1321.
    OpenUrlWeb of Science
  42. ↵
    1. Williams, J.D.,
    2. S. Dun,
    3. D.S. Robertson,
    4. J.Q. Wu,
    5. E.S. Brooks,
    6. D.C. Flanagan, and
    7. D.K. McCool
    . 2010. WEPP simulations of dryland cropping systems in small drainages of Northeastern Oregon. Journal of Soil and Water Conservation 65(1):22–33. https://doi.org/10.2489/jswc.65.1.22.
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Wischmeier, W.H., and
    2. D.D. Smith
    . 1978. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. USDA, Agr iculture Handbook Number 537. Washington, DC: US Government Printing Office.
  44. ↵
    1. Zhang, C.,
    2. J.-J. Luo, and
    3. S. Li
    . 2019. Impacts of tropical Indian and Atlantic Ocean warming on the occurrence of the 2017/2018 La Niña. Geophysical Research Letters 46:3435–3445.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 77 (4)
Journal of Soil and Water Conservation
Vol. 77, Issue 4
July/August 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Spatial and agronomic assessment of water erosion on inland Pacific Northwest cereal grain cropland
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Spatial and agronomic assessment of water erosion on inland Pacific Northwest cereal grain cropland
M. Samrat Dahal, J.Q. Wu, J. Boll, R.P. Ewing, A. Fowler
Journal of Soil and Water Conservation Jul 2022, 77 (4) 347-364; DOI: 10.2489/jswc.2022.00091

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Spatial and agronomic assessment of water erosion on inland Pacific Northwest cereal grain cropland
M. Samrat Dahal, J.Q. Wu, J. Boll, R.P. Ewing, A. Fowler
Journal of Soil and Water Conservation Jul 2022, 77 (4) 347-364; DOI: 10.2489/jswc.2022.00091
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Supplemental Material
    • Acknowledgements
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Keywords

  • erosion hotspots
  • inland Pacific Northwest
  • water erosion
  • watershed modeling
  • WEPP

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society