Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Susceptibility to detachment and transportation of soil material as a result of water erosion in a flysch basin in the Beskid Wyspowy (Western Carpathians): Modeling of rainwater flow paths

W. Halecki, M. Ryczek, E. Kruk, E. Zając, M. Stelmaszczyk and A. Radecki-Pawlik
Journal of Soil and Water Conservation July 2022, 77 (4) 372-380; DOI: https://doi.org/10.2489/jswc.2022.00054
W. Halecki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Ryczek
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Kruk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Zając
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Stelmaszczyk
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Radecki-Pawlik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Achary, M.S.,
    2. K.K. Satpathy,
    3. S.S. Panigrahi,
    4. A.K. Mohanty,
    5. R.K. Padhi,
    6. S. Biswas,
    7. R.K. Prabhu,
    8. S. Vijayalakshmi, and
    9. R.C. Panigrahy
    . 2017. Concentration of heavy metals in the food chain components of the nearshore coastal waters of Kalpakkam, southeast coast of India. Food Control 72:232–243. https://doi.org/10.1016/j.foodcont.2016.04.028.
    OpenUrl
  2. ↵
    1. Beyer, W.
    1964. Zur Bestimmung der Wasserdurchlassigkeit von Kieson und Sanduen aus der Kornverteilung. Wasserwirtsch, Wassertech 14:165–169.
    OpenUrl
  3. ↵
    1. R. Sarsby and
    2. T. Meggyes
    1. Boroń, K.,
    2. S. Klatka,
    3. M. Ryczek, and
    4. E. Zając
    . 2010. Reclamation and cultivation of Cracow soda plant lagoons. In Construction for Sustainable Environment, ed. R. Sarsby and T. Meggyes, 245–250. London: CRC Press Taylor & Francis Group.
  4. ↵
    1. Boroń, K.,
    2. S. Klatka,
    3. M. Ryczek, and
    4. P. Liszka
    . 2016. Kształtowanie się właściwości fizycznych, fizykochemicznych i wodnych rekultywowanego i niezrekultywowanego osadnika byłych Krakowskich Zakładów Sodowych “Solvay” [The formation of the physical, physico-chemical and water properties reclaimed and not reclaimed sediment reservoir of the former Cracow Soda Plant “Solvay”]. Acta Scientiarum Polonorum Formatio Circumiectus 15(3):35–43.
    OpenUrl
  5. ↵
    1. Borreli, P.,
    2. P. Panagos,
    3. M. Märker,
    4. S. Modugno, and
    5. B. Schütt
    . 2017. Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: First comprehensive monitoring and modeling approach. Catena 149(3):770–781. http://dx.doi.org/10.1016/j.catena.2016.02.017.
    OpenUrl
  6. ↵
    1. Brown, L.C., and
    2. G.R. Foster
    . 1987. Storm erosivity using idealized intensity distributions. Transactions of the ASAE 30:379–386. https://doi.org/10.13031/2013.31957.
    OpenUrlWeb of Science
  7. ↵
    1. Capolongo, D.,
    2. N. Diodato,
    3. C.N. Manaerts,
    4. M. Piccarreta, and
    5. R.O. Strobl
    . 2008. Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy). Journal of Hydrology 356:119–130. https://doi.org/10.1016/j.jhydrol.2008.04.002.
    OpenUrlCrossRefGeoRef
  8. ↵
    1. Clarkson, C., and
    2. A. Bellas
    . 2014. Mapping stone: Using GIS spatial modelling to predict lithic source zones. Journal of Archaeologic Sciences 46:324–333. http://dx.doi.org/10.1016/j.jas.2014.03.035.
    OpenUrl
  9. ↵
    1. R.J. Rickson
    1. Coutinho, M.A., and
    2. P.P. Thomas
    . 1994. Comparison of Fournier with Wischmeier rainfall erosivity indices. InConservation Soil Resources, European Perspectives, ed. R.J. Rickson, 192–200. Wallingford: CAB International.
  10. ↵
    1. Daliakopoulos, I.N.,
    2. I.K. Tsanis,
    3. A. Koutroulis,
    4. N.N. Kourgialas,
    5. A.E. Varouchakis,
    6. G.P. Karatzas, and
    7. C.J. Ritsema
    . 2016. The threat of soil salinity: A European scale review. Science of the Total Environment 573:727–739. https://doi.org/10.1016/j.scitotenv.2016.08.177.
    OpenUrlCrossRefPubMed
  11. ↵
    1. El-Hames, A.S.
    2012. An empirical method for peak discharge prediction in ungauged arid and semi-arid region catchments based on morphological parameters and SCS curve number. Journal of Hydrology 456-457:94–100. https://doi.org/10.1016/j.jhydrol.2012.06.016.
    OpenUrl
  12. ↵
    1. Froehlich, W., and
    2. J. Słupik
    . 1980. The pattern of the areal variability of the runoff and dissolved material during the summer drought in flysch drainage basins. Quaestiones Geographicae 6:11–34.
    OpenUrl
  13. ↵
    1. J.P. Wilson and
    2. J.C. Gallant
    1. Gallant, J.C., and
    2. J.P. Wilson
    . 2000. Primary topographic attributes, In Terrain Analysis: Principles and Applications, ed. J.P. Wilson and J.C. Gallant, 51–96. New York: John Wiley & Sons.
  14. ↵
    1. Garreta, V.,
    2. P. Monestiez, and
    3. M.J. Ver Hoef
    . 2010. Spatial modelling and prediction on river networks: Up model, down model or hybrid? Environmetrics 21(5):439–456. DOI:10.1002/env.995.
    OpenUrlCrossRef
  15. ↵
    1. Guzzetti, F.,
    2. S. Peruccacci,
    3. M. Rossi, and
    4. C.P. Stark C.P.
    2008. The rainfall intensity—duration control of shallow landslides and debris flows: An update. Landslides 5:3–17.
    OpenUrlCrossRef
  16. ↵
    1. Halecki, W.,
    2. T. Kowalik, and
    3. A. Bogdał
    . 2019. Multiannual assessment of the risk of surface water erosion and metal accumulation indices in the flysch stream using the MARS model in the Polish Outer Western Carpathians. Sustainability 11:7189. https://doi.org/10.3390/su11247189.
    OpenUrl
  17. ↵
    1. Halecki, W.,
    2. E. Kruk, and
    3. M. Ryczek
    . 2018. Estimations of nitrate nitrogen, total phosphorus flux and suspended sediment concentration (SSC) as indicators of surfaceerosion processes using an ANN (Artificial Neural Network) based on geomorphological parameters in mountainous catchments. Ecological Indicators 19(3):461–469. https://www.cabdirect.org/cabdirect/abstract/20183266880.
    OpenUrl
  18. ↵
    1. Halecki, W.,
    2. D. Młyński,
    3. M. Ryczek,
    4. E. Kruk, and
    5. A. Radecki-Pawlik
    . 2017. The application of Artificial Neural Network (ANN) to assessment of soil salinity and temperature variability in agricultural areas of a mountain catchment. Polish Journal of Environmental Studies 6:2545–2554. DOI:10.15244/pjoes/70925.
    OpenUrlCrossRef
  19. ↵
    1. Hao, H.X.,
    2. J.G. Wang,
    3. Z.L. Guo, and
    4. L. Hua
    . 2019. Water erosion processes and dynamic changes of sediment size distribution under the combined effects of rainfall and overland flow. Catena 173:494–504. https://doi.org/10.1016/j.catena.2018.10.029.
    OpenUrl
  20. ↵
    1. Harden, C.P., and
    2. P.D. Scruggs
    . 2003. Infiltration on mountain slopes: A comparison of three environments. Geomorphology 55:5–24. https://www.elsevier.com/locate/geomorph.
    OpenUrlCrossRefGeoRef
  21. ↵
    1. Horton, R.E.
    1945. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56:275–370.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Janeček, M.,
    2. E. Kubátová, and
    3. M. Tippl
    . 2006. Revised determination of the rainfall runoff erosivity factor R for application of USLE in the Czech Republic. Soil & Water Resources 1(6):65–71.
    OpenUrl
  23. ↵
    1. Janeček, M.,
    2. V. Kvetoň,
    3. E. Kubátová, and
    4. D. Kobzová
    . 2012. Differentiation and regionalization of rainfall erosivity factor values in the Czech Republic. Soil & Water Resources 1(7):1–9.
    OpenUrl
  24. ↵
    1. Jha, A.,
    2. U. Schkade, and
    3. G. Kirchner
    . 2015. Estimating short term soil erosion rates after single and multiple rainfall events by modelling the vertical distribution of cosmogenic 7Be in soils. Geoderma 243-244:149–156. https://doi.org/10.1016/j.geoderma.2014.12.020.
    OpenUrl
  25. ↵
    1. Klatka, S.,
    2. M. Malec,
    3. M. Ryczek, and
    4. K. Boroń
    . 2015. Wpływ działalności eksploatacyjnej Kopalni Węgla Kamiennego “Ruch Borynia” na gospodarkęwodnąwybranych gleb obszaru górniczego [Influence of mine activity of the coal mine “Ruch Borynia” on water management of chosen soils on mining area]. Acta Scientiarum Polonorum Formatio Circumiectus 14(1):115–125.
    OpenUrl
  26. ↵
    1. Klatka, S.,
    2. M. Malec,
    3. M. Ryczek,
    4. E. Kruk, and
    5. E. Zając
    . 2016. Ocena zdolności retencyjnych wybranych odpadów przemysłowych. Acta Scientiarum Polonorum Formatio Circumiectus 15(4):53–60.
    OpenUrl
  27. ↵
    1. Kondracki, J.
    2011. Geografia Regionalna Polski. Warsaw: Wydawnictwo Naukowe PWN.
    1. Kord, M., and
    2. A.A. Moghaddam
    . 2014. Spatial analysis of Ardabil plain aquifer potable groundwater using fuzzy logic. Journal of King Saud University Science 26:129–140.
    OpenUrl
    1. Książyński, W.
    2015. An assessment of impact of climate changes and atmospheric drought on soil moisture. Infrastructure and Ecology of Rural Areas 1:33–45. http://dx.medra.org/10.14597/infraeco.2015.1.1.003.
    OpenUrl
  28. ↵
    1. Li, L.,
    2. J. Wang,
    3. Z. Cao, and
    4. E. Zhong
    . 2008. An informationfusion method to identify pattern of spatial heterogeneity for improving the accuracy of estimation. Stochastic Environmental Research and Risk Assessment 22(6):689–704. DOI:10.1007/s00477-007-0179-1.
    OpenUrlCrossRef
  29. ↵
    1. Li, J.T.,
    2. J.J. Wang,
    3. D.H. Zeng,
    4. S.Y. Zhao,
    5. W.L. Huangb,
    6. X.K. Sunc, and
    7. J.L. Hu
    . 2018. The influence of drought intensity on soil respiration during and after multiple drying-rewetting cycles. Soil Biology and Biochemistry 127:82–89. https://doi.org/10.1016/j.soilbio.2018.09.018.
    OpenUrl
  30. ↵
    1. Liang, W.L., and
    2. T. Uchida
    . 2014. Effects of topography and soil depth on saturated zone dynamics in steep hillslopes explored using three-dimensional Richard’s equation. Journal of Hydrology 510:124–136. https://doi.org/10.1016/j.jhydrol.2013.12.029.
    OpenUrlGeoRef
  31. ↵
    1. Liao, Y.,
    2. Z. Yuan,
    3. M. Zhuo,
    4. B. Huang,
    5. X. Nie,
    6. Z. Xie,
    7. C. Tang, and
    8. D. Li
    . 2019. Coupling effects of erosion and surface roughness on colluvial deposits under continuous rainfall. Soil and Tillage Research 191:984–107. https://doi.org/10.1016/j.still.2019.03.016.
    OpenUrl
  32. ↵
    1. Lin, J.,
    2. Y. Huang,
    3. G. Zhao,
    4. F. Jiang,
    5. M.K. Wang, and
    6. H. Ge
    . 2017. Flow-driven soil erosion processes and the size selectivity of eroded sediment on steep slopes using colluvial deposits in a permanent gully. Catena 157:47–57. https://doi.org/10.1016/j.catena.2017.05.015.
    OpenUrl
  33. ↵
    1. Loureiro, N.S., and
    2. M.A. Coutinho
    . 2001. A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region. Portugal Journal of Hydrology 250:12–18. https://doi.org/10.1016/S0022-1694(01)00387-0.
    OpenUrl
  34. ↵
    1. Marchant, B.P., and
    2. R.M. Lark
    . 2007. Optimized sample schemes for geostatistical surveys. Mathematical Geology 39(1):113–134. https://link.springer.com/article/10.1007/s11004-006-9069-1.
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Masoudi, M., and
    2. A.M. Patwardhan
    . 2006. Risk assessment of water erosion for the Qareh Aghajsubbasin, southern Iran. Stochastic Environmental Research and Risk Assessment 21:15–24. DOI: 10.1016/S0022-1694(01)00387-0.
    OpenUrlCrossRefGeoRef
  36. ↵
    1. Mau, Y., and
    2. A. Porporato
    . 2015. A dynamical system approach to soil salinity and sodicity. Advances in Water Resources 83:68–76. https://doi.org/10.1016/j.advwatres.2015.05.010.
    OpenUrl
  37. ↵
    1. Minasny, B.,
    2. B.A. McBratney, and
    3. J.J.D. Walvoort
    . 2007. The variance quadtree algorithm: Use for spatial sampling design. Computers and Geosciences 33:383–392. https://doi.org/10.1016/j.cageo.2006.08.009.
    OpenUrl
  38. ↵
    1. Mishra, K.S., and
    2. P.V. Singh
    . 2003. Soil Conservation Service Curve Number (SCS-CN) Methodology. Water Science and Technology Library, volume 42. Dordrecht: Springer.
  39. ↵
    1. Nyssen, J.,
    2. H. Vandenreyken,
    3. J. Poesen,
    4. J. Moeyersons,
    5. J. Deckers,
    6. M. Haile,
    7. C. Salles, and
    8. G. Govers
    . 2005. Rainfall erosivity and variability in the Northern Ethiopian Highlands. Journal of Hydrology 311:172–187. https://doi.org/10.1016/j.jhydrol.2004.12.016.
    OpenUrlCrossRefGeoRef
  40. ↵
    1. Park, S.,
    2. C. Oh,
    3. S. Jeon,
    4. H. Jung, and
    5. C. Choi
    . 2011. Soil erosion risk in Korean watersheds, assessed using the Revised Universal Soil Loss Equation. Journal of Hydrology 399:263–273. https://doi.org/10.1016/j.jhydrol.2011.01.004.
    OpenUrlGeoRef
  41. ↵
    1. Podhrázská, J.,
    2. J. Kučera,
    3. P. Karásek, and
    4. J. Konečná
    . 2015. Land degradation by erosion and its economic consequences for the region of south Moravia (Czech Republic). Soil and Water Research 10:105–113. doi:10.17221/143/2014-SWR.
    OpenUrlCrossRef
  42. ↵
    1. Rath, K.M.,
    2. A. Maheshwari, and
    3. J. Rousk
    . 2017. The impact of salinity on the microbial response to drying and rewetting in soil. Soil Biology and Biochemistry 108:17–26. http://dx.doi.org/10.1016/j.soilbio.2017.01.018.
    OpenUrl
  43. ↵
    1. Reichert, J.M.,
    2. L.E.A.S. Suzuki,
    3. D.J. Reinert,
    4. R. Horn, and
    5. I. Hakansson
    . 2009. Reference bulk density and critical degree-of-compactness for no-till crop production in subtropical highly weathered soils. Soil Tillage Research 102:242–254. https://doi.org/10.1016/j.still.2008.07.002.
    OpenUrl
  44. ↵
    1. Rodzik, J.,
    2. T. Furtak, and
    3. W. Zgłobicki
    . 2009. The impact of snowmelt and heavy rainfall runoff on erosion rates in a gully system, Lublin Upland, Poland. Earth Surface Processes and Landforms 34:1938–1950. https://doi.org/10.1002/esp.1882.
    OpenUrlCrossRefGeoRef
  45. ↵
    1. Rosas, J.,
    2. O. Lopez,
    3. T.M. Missimer,
    4. K.M. Coulibaly,
    5. A.H. Dehwah,
    6. K. Sesler,
    7. L.R. Lujan, and
    8. D. Mantilla
    . 2014. Determination of hydraulic conductivity from grainsize distribution for different depositional environments. Ground Water 52(3):399–413.
    OpenUrlGeoRef
  46. ↵
    1. Ryczek, M.,
    2. K. Boroń,
    3. S. Klatka, and
    4. E. Kruk
    . 2010. Wykorzystanie technik GIS do oceny zagrożenia erozją wodną na przykładzie rolniczej zlewni potoku Mątny w Beskidzie Wyspowym. Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu, Rolnictwo XCVI 576:163–174.
    OpenUrl
  47. ↵
    1. Siosemarde, M., and
    2. D.A. Nodehi
    . 2014. Review of empirical equations of estimating saturated hydraulic conductivity based on soil grain size distribution. Journal of Applied Environmental and Biological Sciences 4(1):11–14.
    OpenUrl
  48. ↵
    1. Starkel, L.
    2003. Extreme meteorological events and their role in environmental changes, the economy and history. Global Change 10:7–13.
    OpenUrl
  49. ↵
    1. Starkel, L., and
    2. S. Singh
    . 2004. Rainfall, runoff and soil erosion in the globally extreme humid area. Cherrapunji region, India. Warsaw: Prace Geograficzne IG iPZ PAN.
    1. Stępniewska, S., and
    2. K. Stępniewski
    . 2008. Variability of fluvial transport of the upper Wieprz river. Annals of Warsaw University of Life Sciences — SGGW, Land Reclamation 39:59–68. DOI:10.2478/v10060-008-0005-6.
    OpenUrlCrossRef
  50. ↵
    1. Suif, Z.,
    2. A. Fleifle,
    3. C. Yishimura, and
    4. O. Saavedra
    . 2016. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin. Science of the Total Environment 568:933–945. https://doi.org/10.1016/j.scitotenv.2015.12.134.
    OpenUrl
  51. ↵
    1. Tabachnick, B.G., and
    2. L.S. Fidell
    . 2007. Using Multivariate Statistics. Boston: Pearson Education Inc.
  52. ↵
    1. USDA
    . 1951. Soil Survey Manual. USDA Agriculture Handbook No. 18. Washington, DC: Soil Conservation Service.
    1. USDA NRCS (Natural Resources Conservation Service)
    . 1986. Urban hydrology for small watersheds. Technical Report 55. Washington, DC: USDA NRCS. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf.
  53. ↵
    1. Van Oosten, M.J., and
    2. A. Maggio
    . 2015. Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and Experimental Botany 111:135–146. https://doi.org/10.1016/j.envexpbot.2014.11.010.
    OpenUrlCrossRef
  54. ↵
    1. Wang, J.G.,
    2. B. Yu,
    3. W. Yang,
    4. J.N. Cheng,
    5. Y.R. Song, and
    6. C.F. Cai
    . 2017. The abrasion of soil aggregate under different artificial rough beds in overland flow. Catena 155:183–190. https://doi.org/10.1016/j.catena.2017.03.016.
    OpenUrl
  55. ↵
    1. Wang, X.,
    2. X. Zhao,
    3. Z. Zhang,
    4. L. Yi,
    5. L. Zuo,
    6. Q. Wen,
    7. F. Liu,
    8. J. Xu,
    9. S. Hu, and
    10. B. Liu
    . 2016. Assessment of soil erosion change and its relationships with land use/cover change in China from the end of the 1980s to 2010. Catena 137:256–268. https://doi.org/10.1016/j.catena.2015.10.004.
    OpenUrl
  56. ↵
    1. Wanga, L.,
    2. J. Shi,
    3. Q. Zuo,
    4. W. Zhang, and
    5. X. Zhuc
    . 2012. Optimizing parameters of salinity stress reduction function using the relationship between root-wateruptake and root nitrogen mass of winter wheat. Agricultural Water Management 104:142–152. https://doi.org/10.1016/j.agwat.2011.12.008.
    OpenUrl
  57. ↵
    1. Wilson, J.P., and
    2. J.C. Gallant
    . 2000. Terrain Analysis Principles and Applications, 51–84. Toronto: John Wiley and Sons Inc.
  58. ↵
    1. Wu, B.,
    2. Z. Wang,
    3. N. Shen, and
    4. S. Wang
    . 2016. Modelling sediment transport capacity of rill flow for loess sediments on steep slopes. Catena 147:453–462. https://doi.org/10.1016/j.catena.2016.07.030.
    OpenUrl
  59. ↵
    1. M. De Boodt, and
    2. D. Gabriels
    1. Zanchi, C., and
    2. D. Torri
    . 1980. Evaluation of rainfall energy in central Italy. In Assessment of Erosion, ed. M. De Boodt, and D. Gabriels, 133–142. Toronto: John Wiley.
  60. ↵
    1. Zdruli, P.,
    2. C.G. Karydas,
    3. K. Dedaj,
    4. I. Salillari,
    5. F. Cela,
    6. S. Lushaj, and
    7. P. Panagos
    . 2016. High resolution spatiotemporal analysis of erosion risk per land cover category in Korçe region, Albania. Earth Science Informatics 9(4):481–495. https://doi.org/10.1007/s12145-016-0269-z.
    OpenUrl
  61. ↵
    1. Zhang, Q.,
    2. J. Wang,
    3. L. Zhao,
    4. F. Wu,
    5. Z. Zhang, and
    6. A.H. Torbert
    . 2015. Spatial heterogeneity of surface roughness during different erosive stages of tilled loess slopes under a rainfall intensity of 1.5 mm min-1. Soil Tillage Research 153:95–103. http://dx.doi.org/10.1016/j.still.2015.05.011.
    OpenUrl
  62. ↵
    1. D. Godone and
    2. S. Stanchi
    1. Zheng, Z., and
    2. S. He
    . 2012. Change of soil surface roughness of splash erosion process. In Research on Soil Erosion, ed. D. Godone and S. Stanchi. London: Intech Open.
    1. Zydroń, T.,
    2. A. Wałęga, and
    3. W. Bochenek
    . 2014. Zastosowanie wybranych modeli hydrologicznych do określania wielkości spływu powierzchniowego [Application of selected hydrological models for the calculation overland flow]. Acta Scientiarum Polonorum Formatio Circumiectus 13(2):81–93.
    OpenUrl
    1. Zydroń, T., and
    2. J. Zgoda
    . 2012. Wpływ wilgotności na właściwości wytrzymałościowe gruntów z obszaru Karpackiego [The influence of moisture content on shear strength of soils from the Carpathians]. Acta Scientiarum Polonorum, Formatio Circumiectus 11(2):75–84.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 77 (4)
Journal of Soil and Water Conservation
Vol. 77, Issue 4
July/August 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Susceptibility to detachment and transportation of soil material as a result of water erosion in a flysch basin in the Beskid Wyspowy (Western Carpathians): Modeling of rainwater flow paths
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Susceptibility to detachment and transportation of soil material as a result of water erosion in a flysch basin in the Beskid Wyspowy (Western Carpathians): Modeling of rainwater flow paths
W. Halecki, M. Ryczek, E. Kruk, E. Zając, M. Stelmaszczyk, A. Radecki-Pawlik
Journal of Soil and Water Conservation Jul 2022, 77 (4) 372-380; DOI: 10.2489/jswc.2022.00054

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Susceptibility to detachment and transportation of soil material as a result of water erosion in a flysch basin in the Beskid Wyspowy (Western Carpathians): Modeling of rainwater flow paths
W. Halecki, M. Ryczek, E. Kruk, E. Zając, M. Stelmaszczyk, A. Radecki-Pawlik
Journal of Soil and Water Conservation Jul 2022, 77 (4) 372-380; DOI: 10.2489/jswc.2022.00054
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Supplemental Material
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Keywords

  • agriculture land use
  • material deposition
  • mountain area
  • soil erosion

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society