Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Increased rainfall may place saline/sodic soils on the tipping point of sustainability

M.E. Budak, D.E. Clay, S.A. Clay, C.L. Reese, S. Westhoff, L.E. Howe, R.K. Owen, G. Birru, Y. He and Z. Wang
Journal of Soil and Water Conservation July 2022, 77 (4) 418-425; DOI: https://doi.org/10.2489/jswc.2022.00131
M.E. Budak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.E. Clay
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.A. Clay
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.L. Reese
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Westhoff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.E. Howe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.K. Owen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Birru
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. He
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Almazroui, M.,
    2. N.M. Islam,
    3. F. Saeed,
    4. S. Saeed,
    5. M. Ismail,
    6. M.A. Ehsan,
    7. I. Diallo,
    8. E. O’Brien,
    9. M. Ashfaq,
    10. D. Martinez-Castro,
    11. T. Cavazos,
    12. R. Cerezo-Mota,
    13. M.K. Tippett,
    14. W.J. Gutowski Jr..,
    15. E.J. Alfaro,
    16. H.G. Hidalgo,
    17. A. Vichot-Llano,
    18. J.D. Campbell,
    19. S. Kamil,
    20. I.U. Rashid,
    21. M.B. Sylla,
    22. T. Stephanson,
    23. M. Taylor, and
    24. M. Barlow
    . 2021. Projected changes in temperature and precipitation over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Systems and Environment 5:1–24. https://doi.org/10.1007/s41748-021-00199-5.
    OpenUrl
  2. ↵
    1. Birru, G.A.,
    2. D.E. Clay,
    3. T.M. DeSutter,
    4. C.L. Reese,
    5. A.C. Kennedy,
    6. S.A. Clay,
    7. S.A. Bruggeman,
    8. R.K. Owen, and
    9. D.D. Malo
    . 2019. Chemical amendment of dryland saline-sodic soils did not enhance productivity and soil health in fields without effective drainage. Agronomy Journal 111:496–508.
    OpenUrl
  3. ↵
    1. Cabalar, A.F., and
    2. N. Akbulut
    . 2016. Evaluation of actual and estimated hydraulic conductivities of sands with different gradation and shape. SpringerPlus 5:820. doi:10.1186/s40064-016-2472-2.
    OpenUrlCrossRef
  4. ↵
    1. D.E. Clay,
    2. C.G. Carlson,
    3. S.A. Clay,
    4. L. Wagner,
    5. D. Deneke, and
    6. C. Hay
    1. Carlson, C.G.,
    2. D.E. Clay,
    3. K. Reitsma, and
    4. R. Gelderman
    . 2013. Soybeans, salinity, and sodicity. Chapter 48. In iGrow Soybean: Best Management Practices, ed. D.E. Clay, C.G. Carlson, S.A. Clay, L. Wagner, D. Deneke, and C. Hay. Brookings, SD: South Dakota State University.
  5. ↵
    1. D.E. Clay,
    2. C.G. Carlson,
    3. S.A. Clay, and
    4. E. Byamukama
    1. Carlson, C.G.,
    2. D.E. Clay,
    3. D. Malo,
    4. J. Chang,
    5. C. Reese,
    6. R. Owen,
    7. T. Kharel, and
    8. G. Birru
    . 2016. Saline (salts) and sodium problems and their management in dryland corn production. In iGROW Corn: Best Management Practices, ed. D.E. Clay, C.G. Carlson, S.A. Clay, and E. Byamukama. Brookings, SD: South Dakota State University.
  6. ↵
    1. Chang, C.,
    2. T.G. Sommerfeldt,
    3. J.M. Carefoot, and
    4. G.B. Schaalje
    . 1983. Relationships of electrical onductivity with total dissolved salts and cation concentration of sulfate-dominant soil extracts. Canadian Journal of Soil Sciemce 63:79–86. doi:10.4141/cjss83-008.
    OpenUrlCrossRef
  7. ↵
    1. Cihacek, L.J.,
    2. N. Kalwar, and
    3. T. Scherer
    . 2020. Evaluation of soils for suitability for tile drainage performance. Fargo ND: North Dakota State University SF1617.
  8. ↵
    1. DeSutter, T.,
    2. D. Franzen,
    3. Y. He,
    4. A. Wick,
    5. J. Lee,
    6. B. Deutsch, and
    7. D.E. Clay
    . 2015. Relating sodium percentage to sodium adsorption ratio and its utility in the northern Great Plains. Soil Science Society of America Journal 79:1261–1264. doi:10.2136/sssaj2015.01.0010n.
    OpenUrlCrossRef
  9. ↵
    1. Dontsova, K., and
    2. L.D. Norton
    . 2001. Effect of exchangeable Ca:Mg ratio on soil clay flocculation, infiltration, and erosion. Presented at Sustaining the Global Farm, 10th International Conservation Organization Meeting, West Lafayette, IN, May 24-29, 1999.
  10. ↵
    1. Dungan, R.S.,
    2. B.D. Lee,
    3. P. Shouse, and
    4. J.D. Koff
    . 2007. Saturated hydraulic conductivities of soils bended with waste foundry sand. Soil Science 172:doi:10.1097/SS.0b013e31812f4f72.
    OpenUrlCrossRef
  11. ↵
    1. Garcia-Gutierrez, C.,
    2. Y. Pachepsky, and
    3. M.A. Martin
    . 2018. Technical note: Saturated conductivities and textural heterogeneity of soil. Hydrology and Earth System Sciences 22:3923–3932.
    OpenUrl
  12. ↵
    1. Fiedler, D.,
    2. S.A. Clay,
    3. S. Westhoff,
    4. C.L. Reese,
    5. S.A. Bruggeman,
    6. J. Moriles-Miller,
    7. L. Perkins,
    8. D.R. Joshi, S.-
    9. Y. Marzano, and
    10. D.E. Clay
    . 2022. Phytoremediation and rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil. Journal of Soil and Water Conservation 77(4):381–388. https://doi.org/10.2489/jswc.2022.00112.
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Fiedler, D.J.,
    2. D.E. Clay,
    3. D.R. Joshi,
    4. A. Engel,
    5. S. Y Marzano,
    6. D. Jakubowski,
    7. D. Bhattarai,
    8. C.L. Reese,
    9. S.A. Bruggeman, and
    10. S.A. Clay
    . 2021. CO2, and N2O emissions and microbial community structure from fields that include salt-effected soils. Journal of Environmental Quality 50:567–579. DOI:10.1002/jeq2.20223.
    OpenUrlCrossRef
  14. ↵
    1. Franzen, D.,
    2. N. Kalwar,
    3. A. Wick, and
    4. T. DeSutter
    . 2019. Sodicity and remediation of sodic soils in North Dakota. North Dakota State University Extension Publication F1941. Fargo, ND: North Dakota State University Extension.
  15. ↵
    1. Frenkel, H.,
    2. J.O. Goertzen, and
    3. J.D. Rhoades
    . 1978. Effect of clay type and content, exchangeable sodium percentage, electrolyte concentration on clay dispersion and soil hydraulic conductivity. Soil Science Society of America 42:32–39.
    OpenUrl
  16. ↵
    1. A. Klute
    1. Gee, G.W., and
    2. J.W. Bauder
    . 1986. Particle size analysis. In Methods of Soil Analysis Part 1. Physical and Mineralogical Methods, 2nd edition, ed. A. Klute, 383–411. Agronomy Monograph #9. Madison, WI: American Society of Agronomy.
  17. ↵
    1. George, P.R.
    1978. The dryland salinity problem in North America. Journal of the Department of Agriculture, Western Australia 19:115–116.
    OpenUrl
  18. ↵
    1. He, Y.,
    2. T.M. DeSutter, and
    3. D.E. Clay
    . 2013. Dispersion of pure clay minerals as influenced by calcium/magnesium ratios, sodium adsorption ratios, and electrical conductivity. Soil Science Society of America Journal 77:2014–2019. doi:10.2136/sssaj2013.05.0206n.
    OpenUrlCrossRefGeoRef
  19. ↵
    1. He, Y.,
    2. T. DeSutter,
    3. F. Casey,
    4. D.E. Clay,
    5. D. Franzen, and
    6. D. Steele
    . 2015. Field capacity water as influence by Na and CE: Implications for subsurface drainage. Geoderma 245:83–88.
    OpenUrl
  20. ↵
    1. Hopkins, D.,
    2. K. Chambers,
    3. A. Fraase,
    4. Y. He,
    5. K. Larson,
    6. L. Malum,
    7. L. Sande,
    8. J. Schulte,
    9. E. Sebesta,
    10. D. Strong,
    11. E. Viall, and
    12. R. Utter
    . 2012. Evaluating salinity and sodium levels on soils before drain tile installation: A case study. Soil Horizons 53:24–29.
    OpenUrlCrossRef
  21. ↵
    1. Hundal, S.S.,
    2. G.O. Schwab, and
    3. G.S. Taylor
    . 1976. Drainage system effects on physical properties of a lake-bed clay soil. Soil Science Society of America Journal 40:300–305.
    OpenUrlWeb of Science
  22. ↵
    1. Kharel, T.P.,
    2. D.E. Clay,
    3. C. Reese,
    4. T. DeSutter,
    5. D.D. Malo, and
    6. S.A. Clay
    . 2018. Do precision chemical amendments applications impact sodium movement in dryland semi-arid saline-sodic soils? Agronomy Journal 110:1103–1110. doi:10.2134/agronj2017.07.0416.
    OpenUrlCrossRef
  23. ↵
    1. Levy, G.J.,
    2. D. Golstein, and
    3. A.I. Mamedov
    . 2005. Saturated hydraulic conductivity of semiarid soils: Combined effects of salinity, sodicity, and rate of wetting. Soil Science Society of America Journal 69:653–662.
    OpenUrlGeoRefWeb of Science
  24. ↵
    1. Mahmuduzzsaman, Md.,
    2. Z.U. Ahmed,
    3. A.K.M. Nuruzzaman, and
    4. F.R.S. Ahmed
    . 2014. Causes for salinity intrusion in coastal belt of Bangladesh. International Journal of Plant Research 4:8–13.
    OpenUrl
  25. ↵
    1. McNeal, B.L.,
    2. D.A. Layfield,
    3. W.A. Norvell, W.A., and
    4. J.D. Rhodes
    . 1968. Factors influencing hydraulic conductivity of soils in the presence of mixed-salt solution. Soil Science Society of America Proceedings 32:187–190.
    OpenUrl
  26. ↵
    1. Melillo, J.M.,
    2. T.C. Richmond, and
    3. G.W. Yohe
    . 2014. Highlights of Climate Change Impacts in the United States: The Third National Climate Assessment. Washington, DC: US Global Change Research Program.
  27. ↵
    1. Owen, R.K.
    2015. Spatial Variability of Saline and Sodic soils in the Black Glaciated Region of the Northern Great Plains. Master’s thesis, South Dakota State University.
  28. ↵
    1. Reynolds, W.D., and
    2. D.E. Elrick
    . 1990. Ponded infiltration from a single ring. I. Analysis of steady flow. Soil Science Society of America Journal 54:1233–1241.
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. C.A. Black
    1. Richards, L.A.
    1965. Physical condition of water in soil. In Method of Soil Analysis Part 1, ed. C.A. Black, 128–151. Agronomy Monograph #9. Madison, WI: American Society of Agronomy.
  30. ↵
    1. Ruark, M.D.,
    2. J.C. Panuska,
    3. E.T. Cooley, and
    4. J. Pagel
    . 2009. Tile drainage in Wisconsin: Understanding and locating tile drainage systems. Madison WI: University of Wisconsin Extension GWQ054.
  31. ↵
    1. Scherer, T.,
    2. G. Sand,
    3. H. Kandel, and
    4. C. Hay
    . 2015. Frequently asked questions about subsurface (tile) drainage. North Dakota State University Extension Publication AE1690. Fargo, ND: North Dakota State University Extension.
  32. ↵
    1. Sharma, A.K.,
    2. J.B. Fehrenbacher, and
    3. B.A. Jones Jr..
    1974. Effect of gypsum, soil disturbance and tile spacing on the amelioration of Huey silt loam, a natric soil in Illinois. Soil Science Society of America Proceedings 46:113–117.
    OpenUrl
  33. ↵
    1. Soil Survey Staff
    . 2018. Web Soil Survey. Washington, DC: USDA Natural Resources Conservation Service. http://websoilsurvey.Sc.egov.usda.gov/.
    1. Steedevi, P.D., and
    2. D.V. Redduy
    . 2021. Influence of hydrological and hydrogeological factors on inland groundwater in a hard rock aquifer, south India. Journal of Earth System Science 130:215. https://doi.org/10.1007/s12040-021-01715-x.
    OpenUrl
    1. L. Richards
    1. US Salinity Laboratory Staff
    . 1954. Diagnosis and Improvement of Saline and Alkali Soils. In Agricultural Handbook 60, ed. L. Richards. Riverside, CA: USDA.
    1. van de Craats, D.,
    2. S.E.A.T.M. van der Zee,
    3. C.S. Piet,
    4. A. vzn Asten, and
    5. P. Cornelissen
    . 2020. Soil sodicity originating from marginal groundwater. Vadone Zone Journal 19(1):e20010. https://doi.org/10.1002/vzj2.20010.
    OpenUrl
  34. ↵
    1. Vyshpolsky, F.,
    2. M. Qadir,
    3. A. Karimov,
    4. K. Mukhamedjanov,
    5. U. Bekbaev,
    6. R. Paroda,
    7. A. Aw-Hassan, and
    8. F. Karajeh
    . 2008. Enhancing the productivity of high-magnesium soil and water resources in Central Asia through the application of phosphogypsum. Land Degradation Development 19:45–56. https://doi.org/10.1002/ldr.814.
    OpenUrl
  35. ↵
    1. Wang, L.,
    2. K. Seki,
    3. T. Miyazaki, and
    4. Y. Ishihama
    . 2009. The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy and Water Environment 7:259–270.
    OpenUrl
  36. ↵
    1. Warncke, D., and
    2. J.R. Brown
    . 2015. Potassium and other basic cations. In Recommended Chemical Soil Test Procedures for the North Central Region. NCR Publication No.221 (Revised). Columbia, MO: Missouri Agricultural Experiment Station.
  37. ↵
    1. N.D. Camper
    1. Weber, J.B.,
    2. L.R. Swain,
    3. H.J. Strek, and
    4. J.L. Sartori
    . 1986. Herbicide mobility in soil leaching columns. In Research Methods in Weed Science, 3rd edition, ed N.D. Camper, 189–200. Champaign, IL: Southern Weed Science Society.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 77 (4)
Journal of Soil and Water Conservation
Vol. 77, Issue 4
July/August 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Increased rainfall may place saline/sodic soils on the tipping point of sustainability
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Increased rainfall may place saline/sodic soils on the tipping point of sustainability
M.E. Budak, D.E. Clay, S.A. Clay, C.L. Reese, S. Westhoff, L.E. Howe, R.K. Owen, G. Birru, Y. He, Z. Wang
Journal of Soil and Water Conservation Jul 2022, 77 (4) 418-425; DOI: 10.2489/jswc.2022.00131

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Increased rainfall may place saline/sodic soils on the tipping point of sustainability
M.E. Budak, D.E. Clay, S.A. Clay, C.L. Reese, S. Westhoff, L.E. Howe, R.K. Owen, G. Birru, Y. He, Z. Wang
Journal of Soil and Water Conservation Jul 2022, 77 (4) 418-425; DOI: 10.2489/jswc.2022.00131
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Keywords

  • drainage classification
  • northern Great Plains
  • precision conservation

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society