Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleA Section

Forest management and biochar for continued ecosystem services

Carlos Rodriguez Franco, Deborah S. Page-Dumroese and James Archuleta
Journal of Soil and Water Conservation July 2022, 77 (4) 60A-64A; DOI: https://doi.org/10.2489/jswc.2022.0603A
Carlos Rodriguez Franco
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Deborah S. Page-Dumroese
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James Archuleta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Amonette, J.E.,
    2. H. Blanco-Canqui,
    3. C. Hassebrook,
    4. D.A. Laird,
    5. R. Lal,
    6. J. Lehmann and
    7. D.S. Page-Dumroese
    . 2021. Integrated biochar research: A roadmap. Journal of Soil and Water Conservation 76(1):24A–29A. https://doi.org/10.2489/jswc.2021.1115A.
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Atkinson, C.,
    2. J. Fitzgerald, and
    3. N. Hipps
    . 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 337:1–18.
    OpenUrlCrossRefWeb of Science
    1. Atkinson, J.C.
    2018. How good is the evidence that soil-applied biochar improves water-holding capacity? Soil Use and Management 34:177–186.
    OpenUrl
  3. ↵
    1. Binder, S.,
    2. R.G. Haight,
    3. S. Polasky,
    4. T. Warziniack,
    5. M.H. Mockrin,
    6. R.L. Deal, and
    7. G. Arthaud
    . 2017. Assessment and valuation of forest ecosystem services: State of the science review. General Technical Report NRS-170. Newtown Square, PA: USDA Forest Service, Northern Research Station.
  4. ↵
    1. Blanco-Canqui, H.
    2017. Biochar and soil physical properties. Soil Science Society of America Journal 81:687–711.
    OpenUrl
  5. ↵
    1. Borrelli, P.,
    2. D.A. Robinson,
    3. L.R. Fleischer,
    4. E. Lugato,
    5. C. Ballabio,
    6. C. Alewell,
    7. K. Meusburger,
    8. S. Modugno,
    9. B. Schütt,
    10. V. Ferro, and
    11. V. Bagarello
    . 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 81:1–3.
    OpenUrl
  6. ↵
    1. Buford, M.A., and
    2. D.G. Neary
    . 2010. Sustainable Biofuels from Forests: Meeting the Challenge. Biofuels and Sustainability Reports. Washington, DC: Ecological Society of America. http://esa.org/biofuelsreports.
  7. ↵
    1. Carlson, J.,
    2. J. Saxena,
    3. N. Basta,
    4. L. Hundal,
    5. D. Busalacchi, and
    6. R.P. Dick
    . 2015. Application of organic amendments to restore degraded soil: Effects on soil microbial properties. Environmental Monitoring and Assessment 187:1–15.
    OpenUrlCrossRef
    1. Cowie, A.,
    2. D. Woolf,
    3. J. Gaunt,
    4. M. Brandão,
    5. R.A. Anaya de la Rosa, and
    6. A. Cowie
    . 2019. Biochar, carbon Accounting and climate change. In Biochar for Environmental Management Science, Technology and Implementation. Oxfordshire: Routledge.
  8. ↵
    1. Daily, E.G.
    1997 Nature’s Services: Societal Dependence on Natural Ecosystems. Washington DC: Island Press.
  9. ↵
    1. Duncker, P.S.,
    2. K. Raulund-Rasmussen,
    3. P. Gundersen,
    4. K. Katzensteiner,
    5. J. De Jong,
    6. H.P. Ravn,
    7. M. Smith,
    8. O. Eckmüllner, and
    9. H. Spiecker
    . 2012. How forest management affects ecosystem services, including timber production and economic return: Synergies and trade-offs. Ecology and Society 17(4):50. http://dx.doi.org/10.5751/ES-05066-170450.
    OpenUrl
  10. ↵
    1. M. Marcus Selig,
    2. D. Vosick, and
    3. J. Seidenberg
    1. Ecological Restoration Institute
    . 2010. Four forest restoration initiative landscape strategy economics and utilization analysis, eds. M. Marcus Selig, D. Vosick, and J. Seidenberg. Flagstaff, AZ: Northern Arizona University.
  11. ↵
    1. El-Naggar, A.,
    2. S.S. Lee,
    3. J. Rinklebe,
    4. M. Farooq,
    5. H. Song,
    6. A.K. Sarmah,
    7. A.R. Zimmerman,
    8. M. Ahmad,
    9. M. Sabry,
    10. S.M. Shaheen, and
    11. Y.S. Ok
    . 2019. Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma 337:536–554.
    OpenUrl
    1. FAO (Food and Agriculture Organization of the United Nations)
    . 2019. Soil erosion: the greatest challenge to sustainable soil management. Rome: FAO.
  12. ↵
    1. FAO
    . 2020. Global Forest Resources Assessment 2020: Main report. Rome: FAO.
    1. FAO and ITPS (Intergovernmental Technical Panel on Soils)
    . 2015. Status of the World’s Soil Resources (SWSR) — Main Report. Rome: FAO and ITPS.
    1. E. Fulajtar,
    2. L. Mabit,
    3. C.S. Renschler, and
    4. Y. Lee Zhi
    1. FAO and IAEA (International Atomic Energy Agency)
    . 2017. Use of 137Cs for soil erosion assessment, eds. E. Fulajtar, L. Mabit, C.S. Renschler, and Y. Lee Zhi. Rome: Food and Agriculture Organization of the United Nations and International Atomic Energy Agency.
  13. ↵
    1. Furniss, M.J.,
    2. B.P. Staab,
    3. S. Hazelhurst,
    4. C.F. Clifton,
    5. K.B. Roby,
    6. B.L. Ilhadrt,
    7. E.B. Larry
    8. A.H. Todd,
    9. L.M. Reid,
    10. S.J. Hines,
    11. K.A. Bennett,
    12. C.H. Luce, and
    13. P.J. Edwards
    . 2010. Water, climate change, and forests: Watershed stewardship for a changing climate. General Technical Report PNW-GTR-812. Portland, OR: USDA Forest Service, Pacific Northwest Research Station.
  14. ↵
    1. Fuss, S.,
    2. W.F. Lamb,
    3. M.W. Callaghan,
    4. J. Hilaire,
    5. F. Creutzig,
    6. T. Amman,
    7. T. Beringer,
    8. G.W. de Oliveira,
    9. J. Hartmann,
    10. T. Khanna, and
    11. G. Luderer
    . 2018. Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters. 13:063002
    OpenUrl
  15. ↵
    1. J.J. Manyà
    1. Greco, G.,
    2. B. Gonzalez, and
    3. J.J. Manya
    . 2019. Operating conditions affecting char yield and its potential stability during slow pyrolysis of biomass: A review. In Advanced Carbon Materials From Biomass: An Overview, ed. J.J. Manyà. GreenCarbon Project and Consortium.
  16. ↵
    1. Gul, S.,
    2. K.J. Whalen,
    3. W.B. Thomas,
    4. V. Sachdeva, and
    5. H. Deng
    . 2015. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment 206:46–59. https://doi.org/10.1016/j.agee.2015.03.015.
    OpenUrl
  17. ↵
    1. Hernandez-Soriano, M.C.,
    2. B. Kerré,
    3. P.M. Kopittke,
    4. B. Horemans, and
    5. E. Smolders
    . 2016. Biochar affects carbon composition and stability in soil: A combined spectroscopy-microscopy study. Scientific Report 6:25127. https://doi.org/10.1038%2Fsrep25127.
    OpenUrl
  18. ↵
    1. Kang, M.W.,
    2. M. Yibeltal,
    3. Y.H. Kim,
    4. S.E. Oh,
    5. J.C. Lee,
    6. E.E. Kwon, and
    7. S.S. Lee
    . 2022 Enhancement of soil physical properties and soil water retention with biochar-based soil amendments. Science of the Total Environment 836:155746.
    OpenUrl
  19. ↵
    1. Kimetu, J.M., and
    2. J. Lehmann
    . 2010. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Australian Journal of Soil Research 48(7):577–585.
    OpenUrl
  20. ↵
    1. Lal, R.
    2022. Nature-based solutions of soil management and agriculture. Journal of Soil and Water Conservation 77(2):23A–29A. https://doi.org/10.2489/jswc.2022.0204A.
    OpenUrlFREE Full Text
    1. Lehmann, J.,
    2. J. Gaunt, and
    3. M. Rondon
    . 2006. Biochar sequestration in terrestrial ecosystems: A review. Mitigation and Adaptation Strategies for Global Change 11:403–427.
    OpenUrl
  21. ↵
    1. Lehmann, J., and
    2. S. Joseph
    . 2009. Biochar for Environmental Management: Science and Technology. London and Sterling: Earthscan.
    1. J. Lehmann, J., and
    2. S. Joseph
    1. Lehmann, J., and
    2. S. Joseph
    . 2015. Biochar for environmental management: An introduction. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed., eds. J. Lehmann, J., and S. Joseph. London: Earthscan from Routledge.
  22. ↵
    1. Liu, Y.,
    2. S.L. Goodrick, and
    3. J.A. Stanturf
    . 2013. Future U.S. wildfire potential trends projected using a dynamically downscaled climate change scenario. Forest Ecology and Management 294:120–135.
    OpenUrl
  23. ↵
    1. Millennium Ecosystem Assessment
    . 2005. Ecosystems and Human Well-being: Synthesis. Washington, DC: Island Press. http://www.millenniumassessment.org/documents/document.356.aspx.pdf.
    1. NAS (National Academies of Sciences, Engineering, and Medicine)
    . 2018. Land Management Practices for Carbon Dioxide Removal and Reliable Sequestration: Proceedings of a Workshop—in Brief. Washington, DC: The National Academies Press.
  24. ↵
    1. NAS
    . 2019. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. Washington, DC: The National Academies Press.
  25. ↵
    1. Oliver, C., and
    2. F. Oliver
    . 2018. Global resources and the environment. Cambridge and New York: Cambridge University Press.
  26. ↵
    1. Page-Dumroese, D.S.,
    2. M.D. Busse,
    3. J.G. Archuleta,
    4. D. McAvoy, and
    5. E. Roussel
    . 2017. Methods to reduce forest residue volume after timber harvesting and produce black carbon. Scientifica 2745764.
  27. ↵
    1. Rasa, K.,
    2. J. Heikkinen,
    3. M. Hannula,
    4. K. Arstila,
    5. S. Kulju, and
    6. J. Hyväluoma
    . 2018. How and why does willow biochar increase a clay soil water retention capacity? Biomass and Bioenergy 119:346–353.
    OpenUrl
  28. ↵
    1. Razzaghi F,
    2. P.B. Obour, and
    3. E. Arthur
    . 2020. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 361:114055
    OpenUrl
  29. ↵
    1. Richter, D.
    2007. Humanity’s transformation of Earth’s soil: Pedology’s New Frontier. Soil Science 172:957–967.
    OpenUrlCrossRef
  30. ↵
    1. Rodriguez, F.C., and
    2. J. Conje
    . 2022. The evolution of the dialogue and perspectives on sustainable forest management with special emphasis on the United States of America. Journal of Sustainable Forestry 29:1–45
    OpenUrl
  31. ↵
    1. Rodriguez, F.C., and
    2. D.S. Page-Dumroese
    . 2021 Woody biochar potential for abandoned mine land restoration in the U.S.: A review. Biochar 3:7–22.
    OpenUrl
    1. Shaaban, M.,
    2. L. Van Zwieten,
    3. S. Bashir,
    4. A. Younas,
    5. A. Núñez-Delgado,
    6. M.A. Chhajro,
    7. K.A. Kubar,
    8. U. Ali,
    9. M. S. Rana,
    10. M.A. Mehmood, and
    11. R. Hu
    . 2018. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management 228:429–440.
    OpenUrl
  32. ↵
    1. Sheng, Y., and
    2. L. Zhu
    . 2018. Biochar alters microbial community and carbon sequestration potential across different soil pH. Science of the Total Environment 622-623:1391–1399.
    OpenUrl
  33. ↵
    1. Smyth, B.P.
    2014. Application of an Ecosystem Services Framework for BLM Land Use Planning: Consistency with the Federal Land Policy Management Act and Other Applicable Law. In Federal Resource Management and Ecosystem Services Guidebook. Durham, NC: National Ecosystem Services Partnership. https://nicholasinstitute.duke.edu/content/application-ecosysem-services-framework-blm-land-use-planning-consistency-federal-land.
  34. ↵
    1. Smith, D.
    1986. The Practice of Silviculture, 8th edition. New York: John Wiley and Sons, Inc.
  35. ↵
    1. Spokas, K.A.,
    2. K.B. Cantrell,
    3. J.M. Novak,
    4. D.W. Archer,
    5. J.A. Ippolito,
    6. H.P. Collins,
    7. A.A. Boateng,
    8. I.M. Lima,
    9. M.C. Lamb,
    10. A.J. McAloon,
    11. R.D. Lentz, and
    12. K.A. Nichols
    . 2012. Biochar: A synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality 41:973–989.
    OpenUrlCrossRefPubMed
  36. ↵
    1. Tidwell, L.T.
    2016. Nexus between food, energy, water, and forest ecosystems in the USA. Journal of Environmental Studies 6:214–224.
    OpenUrl
    1. USDA NRCS (Natural Resource Conservation Service)
    . 2007. National soil erosion results tables 2007. National Resources Inventory. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/nri/results/?cid=stelprdb1041678.
  37. ↵
    1. US Department of Energy
    . 2016. Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks, leads M. H. Langholtz, B.J. Stokes, and L. M. Eaton, ORNL/TM-2016/160. Oak Ridge, TN: Oak Ridge National Laboratory. https://info.ornl.gov/sites/publications/Files/Pub62368.pdf.
  38. ↵
    1. Uzi, A.,
    2. Y. Shen,
    3. S. Kawi,
    4. A. Levy, and
    5. C. Wang
    . 2019. Permittivity and chemical characterization of woody biomass during pyrolysis and gasification. Chemical Engineering Journal 355:255–268.
    OpenUrl
  39. ↵
    1. Xu, X.,
    2. Y. Zhao,
    3. J. Sima,
    4. L. Zhao,
    5. O. Mašek, and
    6. X. Cao
    . 2017. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technology 241: 887–899.
    OpenUrl
  40. ↵
    1. Zhao, L.,
    2. X. Cao,
    3. O. Mašek, and
    4. A. Zimmerman
    . 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials 256–257:1–9.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 77 (4)
Journal of Soil and Water Conservation
Vol. 77, Issue 4
July/August 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Forest management and biochar for continued ecosystem services
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Forest management and biochar for continued ecosystem services
Carlos Rodriguez Franco, Deborah S. Page-Dumroese, James Archuleta
Journal of Soil and Water Conservation Jul 2022, 77 (4) 60A-64A; DOI: 10.2489/jswc.2022.0603A

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Forest management and biochar for continued ecosystem services
Carlos Rodriguez Franco, Deborah S. Page-Dumroese, James Archuleta
Journal of Soil and Water Conservation Jul 2022, 77 (4) 60A-64A; DOI: 10.2489/jswc.2022.0603A
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • BACKGROUND
    • SOIL FORMATION AND NUTRIENT RETENTION
    • SOIL WATER RETENTION
    • CARBON SEQUESTRATION
    • FOREST MANAGEMENT AND BIOCHAR
    • CHALLENGES, OPPORTUNITIES, AND RESEARCH NEEDS
    • DISCLAIMER
    • REFERENCES
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

A Section

  • Flooding: Management and risk mitigation
  • Twenty years of conservation effects assessment in the St. Joseph River watershed, Indiana
  • Developing cover crop systems for California almonds: Current knowledge and uncertainties
Show more A Section

Feature

  • Twenty years of conservation effects assessment in the St. Joseph River watershed, Indiana
  • Developing cover crop systems for California almonds: Current knowledge and uncertainties
  • The flood-drought syndrome and ecological degradation of the Indo-Gangetic Plains of South Asia
Show more Feature

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society