Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

The soil microbiome unveils strong imprints of artificial erosion after 27 years

N.Z. Lupwayi, F.J. Larney, H.H. Janzen, E.G. Smith and R.M. Petri
Journal of Soil and Water Conservation January 2023, 78 (1) 16-25; DOI: https://doi.org/10.2489/jswc.2023.00045
N.Z. Lupwayi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.J. Larney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.H. Janzen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.G. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.M. Petri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Soil erosion is a severe and widespread form of land degradation worldwide, and is being exacerbated by effects of climate change, such as increased storm frequency and intensity. It is important to study the impact of soil erosion on the soil microbiome because soil microbes are crucial drivers of many important soil biological processes in agriculture. In 2016 and 2017, we sampled a simulated soil erosion field trial established in 1990 to investigate the effects of different depths of topsoil removal and restorative soil amendments on soil pH, microbial biomass carbon (MBC) and the activities of enzymes that mediate C, nitrogen (N), phosphorus (P), and sulfur (S) cycling, plus the diversity and composition of soil prokaryotic (bacteria and archaea) and fungal communities. The one-time (1990) treatments consisted of a split-plot combination of three depths of topsoil removal (0, 10, and 20 cm) as main plots, and three restorative soil amendments (check, topsoil, and cattle manure) as subplots. Soil pH was higher in the eroded treatments than the noneroded treatment, but the opposite was observed for MBC and the activities of β-glucosidase (C cycling) and N-acetyl-β-glucosinidase (C and N cycling). The restorative amendments did not affect soil pH, MBC, or enzyme activities. The relative abundances of the archaea Thaumarchaeota was higher in noneroded treatments than in eroded treatments, but the reverse was observed for the bacteria Chloroflexi, Gemmatimonadetes, Planctomycetes, and Verrucomicrobia. For fungi, the relative abundance of Basidiomycota was lower in eroded treatments than in the noneroded treatment, but the opposite was true for Mortierellomycota. The β-diversity analyses also showed different prokaryotic and fungal community structures between eroded and noneroded treatments, but the restorative amendment effects were less distinct. Therefore, soil erosion and excavation can have lasting imprints on the soil microbiome, particularly negative imprints on total microbial biomass and its C and N cycling potential, while imprints of restorative measures such as manure or topsoil amendment were not as strong. A single desurfacing event has effects that last for decades, and our efforts to reverse them are largely ineffective when applied only once.

Key words
  • soil amendments
  • soil biodiversity
  • soil enzymes
  • soil erosion
  • soil excavation
  • © 2023 by the Soil and Water Conservation Society
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 78 (1)
Journal of Soil and Water Conservation
Vol. 78, Issue 1
January/February 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The soil microbiome unveils strong imprints of artificial erosion after 27 years
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The soil microbiome unveils strong imprints of artificial erosion after 27 years
N.Z. Lupwayi, F.J. Larney, H.H. Janzen, E.G. Smith, R.M. Petri
Journal of Soil and Water Conservation Jan 2023, 78 (1) 16-25; DOI: 10.2489/jswc.2023.00045

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The soil microbiome unveils strong imprints of artificial erosion after 27 years
N.Z. Lupwayi, F.J. Larney, H.H. Janzen, E.G. Smith, R.M. Petri
Journal of Soil and Water Conservation Jan 2023, 78 (1) 16-25; DOI: 10.2489/jswc.2023.00045
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Supplemental Material
    • Acknowledgements
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
Show more Research Section

Similar Articles

Keywords

  • soil amendments
  • soil biodiversity
  • soil enzymes
  • soil erosion
  • soil excavation

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society