Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

The soil microbiome unveils strong imprints of artificial erosion after 27 years

N.Z. Lupwayi, F.J. Larney, H.H. Janzen, E.G. Smith and R.M. Petri
Journal of Soil and Water Conservation January 2023, 78 (1) 16-25; DOI: https://doi.org/10.2489/jswc.2023.00045
N.Z. Lupwayi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.J. Larney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.H. Janzen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.G. Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.M. Petri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Allen, B.L.,
    2. V.L. Cochran,
    3. T. Caesar, and
    4. D.L. Tanaka
    . 2011. Long-term effects of topsoil removal on soil productivity factors, wheat yield and protein content. Archives of Agronomy & Soil Science 57:293-303.
    OpenUrl
  2. ↵
    1. Analytical Software
    . 2008. Statistix 9 User’s Manual. Tallahassee, FL: Analytical Software.
  3. ↵
    1. Bellemain, E.,
    2. T. Carlsen,
    3. C. Brochmann,
    4. E. Coissac,
    5. P. Taberlet, and
    6. H. Kauserud
    . 2010. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiology 10(1):189.
    OpenUrlCrossRefPubMed
  4. ↵
    1. Boardman, J.
    2006. Soil erosion science: Reflections on the limitations of current approaches. Catena 68:73–86.
    OpenUrlGeoRef
  5. ↵
    1. Boh, M.Y., and
    2. O.G. Clark
    . 2020. Nitrogen and phosphorus flows in Ontario’s food systems. Resources, Conservation and Recycling 154:104639.
    OpenUrl
  6. ↵
    1. Brewer, T.E.,
    2. E.L. Aronson,
    3. K. Arogyaswamy,
    4. S.A. Billings,
    5. J.K. Botthoff,
    6. A.N. Campbell,
    7. N.C. Dove, et al.
    2019. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBio 10(5):e01318-19.
    OpenUrl
  7. ↵
    1. Caporaso, J.G.,
    2. C.L. Lauber,
    3. W.A. Walters,
    4. D. Berg-Lyons,
    5. C.A. Lozupone,
    6. P.J. Turnbaugh,
    7. N. Fierer, and
    8. R. Knight
    . 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Science USA 108:4516-4522.
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Chong, J.,
    2. P. Liu,
    3. G. Zhou, and
    4. J. Xia
    . 2020. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nature Protocols 15:799-821.
    OpenUrl
  9. ↵
    1. den Biggelaar, C.,
    2. R. Lal,
    3. K. Wiebe, and
    4. V. Breneman
    . 2004. The global impact of soil erosion on productivity I: Absolute and relative erosion-induced yield losses. Advances in Agronomy 81:1-48.
    OpenUrl
  10. ↵
    1. R.P. Dick
    1. Deng, S.,
    2. H. Kang, and
    3. C. Freeman
    . 2011. Microplate fluorometric assay for soil enzymes. In Methods in Soil Enzymology, ed. R.P. Dick, 311-318. Madison, WI: Soil Science Society of America.
  11. ↵
    1. Deng, H.,
    2. B. Zhang,
    3. R. Yin,
    4. H. Wang,
    5. S.M. Mitchell,
    6. B.S. Griffiths, and
    7. T.J. Daniell
    . 2010. Long-term effect of re-vegetation on the microbial community of a severely eroded soil in sub-tropical China. Plant and Soil 328:447-458.
    OpenUrl
  12. ↵
    1. J.W. Doran and
    2. A.J. Jones
    1. Dick, R.P.,
    2. D.P. Breakwell, and
    3. R.F. Turco
    . 1996. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In Methods for Assessing Soil Quality, ed. J.W. Doran and A.J. Jones, 247-271. Madison, WI: Soil Science Society of America.
  13. ↵
    1. Doetterl, S.,
    2. K. Van Oost, and
    3. J. Six
    . 2012. Towards constraining the magnitude of global agricultural sediment and soil organic carbon fluxes. Earth Surface Processes and Landforms 37:642-655.
    OpenUrl
  14. ↵
    1. Dominchin, M.F.,
    2. R.A. Verdenelli,
    3. A. Aoki, and
    4. J.M. Meriles
    . 2020. Soil microbiological and biochemical changes as a consequence of land management and water erosion in a semiarid environment. Archives of Agronomy and Soil Science 66:763-777.
    OpenUrl
  15. ↵
    1. Du, L.,
    2. R. Wang,
    3. X. Gao,
    4. Y. Hu, and
    5. S. Guo
    . 2020. Divergent responses of soil bacterial communities in erosion-deposition plots on the Loess Plateau. Geoderma 358:113995.
    OpenUrlCrossRef
  16. ↵
    1. Dungait, J.A.J.,
    2. C. Ghee,
    3. J.S. Rowan,
    4. B.M. McKenzie,
    5. C. Hawes,
    6. E.R. Dixon,
    7. E. Paterson, and
    8. D.W. Hopkins
    . 2013. Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology & Biochemistry 60:195-201.
    OpenUrl
  17. ↵
    1. Fierer, N.,
    2. M.A. Bradford, and
    3. R.B. Jackson
    . 2007. Toward an ecological classification of soil bacteria. Ecology 88:1354-1364.
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. Francioli, D.,
    2. E. Schulz,
    3. G. Lentendu,
    4. T. Wubet,
    5. F. Buscot, and
    6. T. Reitz
    . 2016. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Frontiers of Microbiology 7:1446.
    OpenUrl
  19. ↵
    1. Gregorich, E.G.,
    2. K.J. Greer,
    3. D.W. Anderson, and
    4. B.C. Liang
    . 1998. Carbon distribution and losses: Erosion and deposition effects. Soil & Tillage Research 47:291-302.
    OpenUrlCrossRef
  20. ↵
    1. Hancock, G.R.,
    2. V. Kunkel,
    3. T. Wells, and
    4. C. Martinez
    . 2019. Soil organic carbon and soil erosion—Understanding change at the large catchment scale. Geoderma 343:60-71.
    OpenUrl
  21. ↵
    1. Helgason, B.L.,
    2. H.J. Konschuh,
    3. A. Bedard-Haughn, and
    4. A.J. VandenBygaart
    . 2014. Microbial distribution in an eroded landscape: Buried A horizons support abundant and unique communities. Agriculture, Ecosystems & Environment 196:94-102.
    OpenUrl
  22. ↵
    1. Ho, A.,
    2. D.P. Di Lonardo, and
    3. P.L.E. Bodelier
    . 2017. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology 93:fix006.
    OpenUrlCrossRef
  23. ↵
    1. Holman, D.B.,
    2. X. Hao,
    3. E. Topp,
    4. H.E. Yang, and
    5. T.W. Alexander
    . 2016. Effect of co-composting cattle manure with construction and demolition waste on the archaeal, bacterial, and fungal microbiota, and on antimicrobial resistance determinants. PLoS ONE 11(6):e0157539.
    OpenUrl
  24. ↵
    1. R.W. Weaver,
    2. S. Angle,
    3. P. Bottomly,
    4. D. Bezdicek,
    5. S. Smith,
    6. A. Tabatabai, and
    7. A. Wollum
    1. Horwath, W.R., and
    2. E.A. Paul
    . 1994. Microbial biomass. In Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties, ed. R.W. Weaver, S. Angle, P. Bottomly, D. Bezdicek, S. Smith, A. Tabatabai, and A. Wollum, 753–773. Madison, WI: Soil Science Society of America.
  25. ↵
    1. Hou, S.,
    2. M.X. Xin,
    3. L. Wang,
    4. H. Jiang,
    5. N. Li, and
    6. Z.Q. Wang
    . 2014. The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China. Acta Ecologica Sinica 34:295-301.
    OpenUrl
  26. ↵
    1. Jirout, J.,
    2. M. Šimek, and
    3. D. Elhottová
    . 2013. Fungal contribution to nitrous oxide emissions from cattle impacted soils. Chemosphere 90:565-572.
    OpenUrlCrossRefPubMed
  27. ↵
    1. Larney, F.J., and
    2. H.H. Janzen
    . 2012. Long-term erosion-productivity relationships: The Lethbridge soil scalping studies. Prairie Soils and Crops Journal 5:139-146.
    OpenUrl
  28. ↵
    1. Larney, F.J.,
    2. H.H. Janzen,
    3. B.M. Olson, and
    4. C.W. Lindwall
    . 2000. Soil quality and productivity responses to simulated erosion and restorative amendments. Canadian Journal of Soil Science 80:515-522.
    OpenUrlGeoRef
  29. ↵
    1. Larney, F.J.,
    2. H.H. Janzen,
    3. B.M. Olson, and
    4. A.F. Olson
    . 2009. Erosion–productivity–soil amendment relationships for wheat over 16 years. Soil & Tillage Research 103:73–83.
    OpenUrlCrossRef
  30. ↵
    1. Larney, F.J.,
    2. L. Li,
    3. H.H. Janzen,
    4. D.A. Angers, and
    5. B.M. Olson
    . 2016. Soil quality attributes, soil resilience and legacy effects following topsoil removal and one-time amendments. Canadian Journal of Soil Science 96:177-190.
    OpenUrl
  31. ↵
    1. Larney, F.J., and
    2. A.F. Olson
    . 2018. Wheat yield and soil properties reveal legacy effects of artificial erosion and amendments on a dryland Dark Brown Chernozem. Canadian Journal of Soil Science 98:663-677.
    OpenUrl
  32. ↵
    1. Liu, L.,
    2. Y. Yan,
    3. H. Ding,
    4. J. Zhao,
    5. Z. Cai,
    6. C. Dai, and
    7. X. Huang
    . 2021. The fungal community outperforms the bacterial community in predicting plant health status. Applied Microbiology and Biotechnology 105:6499-6513.
    OpenUrl
  33. ↵
    1. Lupwayi, N.Z.,
    2. D.A. Kanashiro,
    3. A.H. Eastman, and
    4. X. Hao
    . 2018. Soil phospholipid fatty acid biomarkers and β-glucosidase activities after long-term manure and fertilizer N applications. Soil Science Society of America Journal 82:342-353.
    OpenUrl
  34. ↵
    1. Lupwayi, N.Z.,
    2. Y. Zhang,
    3. X. Hao,
    4. B.W. Thomas,
    5. A.H. Eastman, and
    6. T.D. Schwinghamer
    . 2019. Linking soil microbial biomass and enzyme activities to long-term manure applications and their nonlinear legacy. Pedobiologia 74:34-42.
    OpenUrl
  35. ↵
    1. Ma, X.,
    2. C. Zhao,
    3. Y. Gao,
    4. B. Liu,
    5. T. Wang,
    6. T. Yuan,
    7. L. Hale,
    8. J.D.V. Nostrand,
    9. S. Wan,
    10. J. Zhou, and
    11. Y. Yang
    . 2017. Divergent taxonomic and functional responses of microbial communities to field simulation of aeolian soil erosion and deposition. Molecular Ecology 26:4186-4196.
    OpenUrlCrossRef
  36. ↵
    1. Mabit, L.,
    2. C. Bernard, and
    3. M.R. Laverdiere
    . 2007. Assessment of erosion in the Boyer River watershed (Canada) using a GIS oriented sampling strategy and 137Cs measurements. Catena 71:242-249.
    OpenUrlGeoRef
  37. ↵
    1. Naylor, D.,
    2. R. McClure, and
    3. J. Jansson
    . 2022. Trends in microbial community composition and function by soil depth. Microorganisms 10:540.
    OpenUrl
  38. ↵
    1. Nearing, M.A.,
    2. F.F. Pruski, and
    3. M.R. O’Neal
    . 2004. Expected climate change impacts on soil erosion rates: A review. Journal of Soil and Water Conservation 59(1):43-50.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Pruesse, E.,
    2. C. Quast,
    3. K. Knittel,
    4. B.M. Fuchs,
    5. W. Ludwig,
    6. J. Peplies, and
    7. F.O. Glöckner
    . 2007. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acid Research 35:7188–7196.
    OpenUrlCrossRefPubMedWeb of Science
  40. ↵
    1. Rizzo, L.,
    2. D.A. Sutton,
    3. N.P. Wiederhold,
    4. E.H. Thompson,
    5. R. Friedman,
    6. B.L. Wickes,
    7. J.F. Cano-Lira,
    8. A.M. Stchigel, and
    9. J. Guarro
    . 2014. Isolation and characterisation of the fungus Spiromastix asexualis sp. nov. from discospondylitis in a German Shepherd dog, and review of Spiromastix with the proposal of the new order Spiromastixales (Ascomycota). Mycoses 57:419-428.
    OpenUrlCrossRefPubMed
  41. ↵
    1. C.B. Field,
    2. V. Barros,
    3. T.F. Stocker,
    4. D. Qin,
    5. D.J. Dokken,
    6. K.L. Ebi,
    7. M.D. Mastrandrea,
    8. K.J. Mach,
    9. G.K. Plattner,
    10. S.K. Allen,
    11. M. Tignor, and
    12. P.M. Midgley
    1. Seneviratne, S.I.,
    2. N. Nicholls,
    3. D. Easterling,
    4. C.M. Goodess,
    5. S. Kanae,
    6. J. Kossin,
    7. Y. Luo,
    8. J. Marengo,
    9. K. McInnes,
    10. M. Rahimi,
    11. M. Reichstein,
    12. A. Sorteberg,
    13. C. Vera, and
    14. X. Zhang
    . 2012. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, eds. C.B. Field, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley, 109-230. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge, UK, and New York, NY: Cambridge University Press.
  42. ↵
    1. R. Burt and
    2. S.S. Snapp
    1. Soil Survey Staff
    . 2014. Kellogg Soil Survey Laboratory Methods Manual. In Soil Survey Investigations Report No. 42, Version 5.0., eds. R. Burt and S.S. Snapp. Washington, DC: USDA Natural Resources Conservation Service.
  43. ↵
    1. Sun, L.,
    2. Y.F. Liu,
    3. X. Wang,
    4. Y. Liu, and
    5. G.L. Wu
    . 2022. Soil nutrient loss by gully erosion on sloping alpine steppe in northern Qinghai-Tibetan plateau. Catena 208:105763.
    OpenUrl
  44. ↵
    1. Wang, X.,
    2. Q. Bian,
    3. Y. Jiang,
    4. L. Zhu,
    5. Y. Chen,
    6. Y. Liang, and
    7. B. Sun
    . 2021a. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biology & Biochemistry 153:108062.
    OpenUrl
  45. ↵
    1. Wang, R.,
    2. Y. Hu,
    3. A. Khan,
    4. L. Du,
    5. Y. Wang,
    6. F. Hou, and
    7. S. Guo
    . 2021b. Soil prokaryotic community structure and co-occurrence patterns on the fragmented Chinese Loess Plateau: Effects of topographic units of a soil eroding catena. Catena 198:105035.
    OpenUrl
  46. ↵
    1. Xiao, H.,
    2. Z. Li,
    3. X. Chang,
    4. J. Huang,
    5. X. Nie,
    6. C. Liu,
    7. L. Liu,
    8. D. Wang,
    9. Y. Dong, and
    10. J. Jiang
    . 2017. Soil erosion-related dynamics of soil bacterial communities and microbial respiration. Applied Soil Ecology 119:205-213.
    OpenUrl
  47. ↵
    1. Xun, W.,
    2. J. Zhao,
    3. C. Xue,
    4. G. Zhang,
    5. W. Ran,
    6. B. Wang,
    7. Q. Shen, and
    8. R. Zhang
    . 2016. Significant alteration of soil bacterial communities and organic carbon decomposition by different long-term fertilization management conditions of extremely low-productivity arable soil in South China. Environmental Microbiology 18:1907-1917.
    OpenUrlCrossRef
  48. ↵
    1. Yao, X.,
    2. N. Zhang,
    3. H. Zeng, and
    4. W. Wang
    . 2018. Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of Northern China. Science of the Total Environment 630:96-102.
    OpenUrl
  49. ↵
    1. Zhang, Y.,
    2. X. Hao,
    3. T.W. Alexander,
    4. B.W. Thomas,
    5. X. Shi, and
    6. N.Z. Lupwayi
    . 2018. Long-term and legacy effects of manure application on soil microbial community composition. Biology & Fertility of Soils 54:269-283.
    OpenUrl
  50. ↵
    1. Zhou, K.,
    2. Y. Sui,
    3. X. Liu,
    4. X. Zhang,
    5. J. Jin,
    6. G. Wang, and
    7. S.J. Herbert
    . 2015. Crop rotation with nine-year continuous cattle manure addition restores farmland productivity of artificially eroded Mollisols in Northeast China. Field Crops Research 171:138-145.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 78 (1)
Journal of Soil and Water Conservation
Vol. 78, Issue 1
January/February 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The soil microbiome unveils strong imprints of artificial erosion after 27 years
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The soil microbiome unveils strong imprints of artificial erosion after 27 years
N.Z. Lupwayi, F.J. Larney, H.H. Janzen, E.G. Smith, R.M. Petri
Journal of Soil and Water Conservation Jan 2023, 78 (1) 16-25; DOI: 10.2489/jswc.2023.00045

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The soil microbiome unveils strong imprints of artificial erosion after 27 years
N.Z. Lupwayi, F.J. Larney, H.H. Janzen, E.G. Smith, R.M. Petri
Journal of Soil and Water Conservation Jan 2023, 78 (1) 16-25; DOI: 10.2489/jswc.2023.00045
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Supplemental Material
    • Acknowledgements
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
Show more Research Section

Similar Articles

Keywords

  • soil amendments
  • soil biodiversity
  • soil enzymes
  • soil erosion
  • soil excavation

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society