Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Analysis of soil water potential characteristics of wheat croplands and apple orchards in an agroforestry ecosystem based on the van Genuchten model

L. Zhang and Y. Wang
Journal of Soil and Water Conservation January 2023, 78 (1) 33-43; DOI: https://doi.org/10.2489/jswc.2023.00038
L. Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Due to intense droughts and water shortages, soil water deficit limits agricultural production in arid and semiarid areas, such as China’s Loess Plateau region. Yet the effects of different cover crops on soil water in these areas have received insufficient attention. This study was conducted in the Weibei rainfed highland to investigate soil water potential dynamics in an agroforestry ecosystem comprising winter wheat (Triticum aestivum L.) and apple (Malus domestica) trees over the apple growth period (March to September of 2020). Soil water characteristic curves (SWCCs) of cropland topsoil (0 to 40 cm), orchard topsoil (0 to 40 cm), dark loessial subsoil (40 to 80 cm), and loess parent material (80 to 150 cm) were determined using the centrifuge method and water vapor equilibrium method. The van Genuchten model was used to fit SWCCs and then convert volumetric soil water content monitored in field plots to soil water potential. A quantitative analysis was conducted to evaluate soil water stress in wheat croplands and apple orchards. The model performed well in fitting SWCCs for all tested soils, yielding a robust accuracy (R2 > 0.96). Compared to apple trees, wheat was more threatened by drought. From mid-March to early July, the 0 to 100 cm soil layers of croplands all exhibited high water stress with matric suction pF > 3.98, and unavailable water occurred in the 0 to 20 cm and 0 to 80 cm soil layers in late March to late April and mid-May to mid-July, respectively. Drought threat in apple orchards increased with an increase in tree age. In young orchards (<10 y), high water stress was found only in surface soil layers (0 to 20 cm) in mid-March to late April and late May to early July, which spread to a depth of 70 cm in early June to early July. In mature orchards (10 to 20 y), high water stress was similarly observed in the surface soil layers in mid-March to early May and late May to early July, which extended to the 80 cm depth in late May to early July. In old orchards (>20 y), high water stress initially emerged in the surface soil layers in early April to mid-April and then reached the 70 cm depth in late May to mid-July, whereas unavailable water occurred in the 0 to 60 cm soil layers in mid-June to mid-July. The results indicated that soil water stress zones with low water potential were formed intermittently at different soil depths of apple orchards depending on tree age and growth stage. However, compared to wheat croplands, apple orchards were less influenced by drought stress, so that converting croplands to orchards could alleviate drought threats in the Weibei area.

Key words
  • apple growing
  • spatio-temporal variation
  • van Genuchten model
  • water potential
  • Weibei rainfed highland
  • winter wheat
  • © 2023 by the Soil and Water Conservation Society
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 78 (1)
Journal of Soil and Water Conservation
Vol. 78, Issue 1
January/February 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Analysis of soil water potential characteristics of wheat croplands and apple orchards in an agroforestry ecosystem based on the van Genuchten model
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
12 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Analysis of soil water potential characteristics of wheat croplands and apple orchards in an agroforestry ecosystem based on the van Genuchten model
L. Zhang, Y. Wang
Journal of Soil and Water Conservation Jan 2023, 78 (1) 33-43; DOI: 10.2489/jswc.2023.00038

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Analysis of soil water potential characteristics of wheat croplands and apple orchards in an agroforestry ecosystem based on the van Genuchten model
L. Zhang, Y. Wang
Journal of Soil and Water Conservation Jan 2023, 78 (1) 33-43; DOI: 10.2489/jswc.2023.00038
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Author Contributions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Women taking action: Multisession learning circles, storytelling, and an ecosystem of relationships for conservation
  • Influence of gypsum and cover crop on greenhouse gas emissions in soybean cropping systems
  • Soil organic carbon and nitrogen storage estimated with the root-zone enrichment method under conventional and conservation land management across North Carolina
Show more Research Section

Similar Articles

Keywords

  • apple growing
  • spatio-temporal variation
  • van Genuchten model
  • water potential
  • Weibei rainfed highland
  • winter wheat

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society