Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Cropping system drives microbial community response to simulated climate change and plant inputs

S.L. Bell, A.E. Zimmerman and K.S. Hofmockel
Journal of Soil and Water Conservation March 2023, 78 (2) 178-192; DOI: https://doi.org/10.2489/jswc.2023.00069
S.L. Bell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.E. Zimmerman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.S. Hofmockel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

The soil microbiome’s role in regulating biogeochemical processing is critical to the cycling and storage of soil organic carbon (C). The function of the microbiome under different land management uses has become a focal area of research due to the interest in managing soil C to mitigate climate change. This study investigates the structural and functional response of soil microbiomes from annual monoculture (corn [Zea mays L.]) and perennial diversified (prairie) cropping systems, both under no-till management for bioenergy production. We used a full factorial soil incubation study to understand the influence of temperature and moisture on microbial C decomposition in these soils, with and without addition of cellulose as a model plant residue. Overall, perennial prairie soil supported distinct microbiomes with more diverse prokaryotic and fungal communities compared to annual corn soil. The less diverse corn microbiome was sensitive to the addition of C, resulting in significantly higher respiration compared to prairie, and this increased respiration was amplified under warmer temperatures. In contrast to C loss from the corn soil as carbon dioxide (CO2), prairie soil had significantly higher extracellular enzyme activities and small increases in microbial biomass, illustrating cropping system-specific tradeoffs between microbial C allocation. Specific community structure shifts occurred with added cellulose, where fast-growing, motile decomposers became more abundant under wet conditions, while a small subset of fungi dominated under dry conditions. These differential responses of fungi and bacteria reflect microbial traits important for accessing substrates like plant residues. These changes in community structure due to moisture and cellulose amendment were not necessarily reflected in community function, as potential enzyme activities of most hydrolases were insensitive to temperature and C amendment on this short time scale. Lower respiration occurred in prairie compared to corn soil in response to increased available C and temperature, indicating a more resistant prairie microbiome that may be beneficial when confronted with climate change. These findings support deploying perennial and diversified systems in place of annual monocultures as bioenergy feedstocks, cover crops, buffer strips, or urban greenspaces as part of a land management strategy and highlight the importance of microbial activity in developing sustainable agroecosystems.

Key words
  • bioenergy
  • carbon cycling
  • diverse agriculture
  • soil microbiomes
  • soil respiration
  • © 2023 by the Soil and Water Conservation Society
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 78 (2)
Journal of Soil and Water Conservation
Vol. 78, Issue 2
March/April 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Cropping system drives microbial community response to simulated climate change and plant inputs
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Cropping system drives microbial community response to simulated climate change and plant inputs
S.L. Bell, A.E. Zimmerman, K.S. Hofmockel
Journal of Soil and Water Conservation Mar 2023, 78 (2) 178-192; DOI: 10.2489/jswc.2023.00069

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Cropping system drives microbial community response to simulated climate change and plant inputs
S.L. Bell, A.E. Zimmerman, K.S. Hofmockel
Journal of Soil and Water Conservation Mar 2023, 78 (2) 178-192; DOI: 10.2489/jswc.2023.00069
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Supplemental Material
    • Acknowledgements
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

Research Section

  • Microbial respiration gives early indication of soil health improvement following cover crops
  • Aerial interseeding and planting green to enhance nitrogen capture and cover crop biomass carbon
  • Rice producer enrollment and retention in a USDA regional conservation partnership program in the southern United States
Show more Research Section

Research

  • Soil organic carbon and nitrogen storage estimated with the root-zone enrichment method under conventional and conservation land management across North Carolina
  • A framework to estimate climate mitigation potential for US cropland using publicly available data
  • Nitrate losses from Midwest US agroecosystems: Impacts of varied management and precipitation
Show more Research

Similar Articles

Keywords

  • bioenergy
  • carbon cycling
  • diverse agriculture
  • soil microbiomes
  • soil respiration

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society