Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleA Section

Climate and pest interactions pose a cross-landscape management challenge to soil and water conservation

Joshua W. Campbell, Michael R. Fulcher, Brenda J. Grewell and Stephen L. Young
Journal of Soil and Water Conservation March 2023, 78 (2) 39A-44A; DOI: https://doi.org/10.2489/jswc.2023.1025A
Joshua W. Campbell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael R. Fulcher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brenda J. Grewell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen L. Young
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Ali, S.,
    2. P. Gladieux,
    3. M. Leconte,
    4. A. Gautier,
    5. A.F. Justesen,
    6. M.S. Hovmøller,
    7. J. Enjalbert, and
    8. C. de Vallavieille-Pope
    . 2014. Origin, migration routes and orlwdwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f.sp. tritici. PLoS Pathogens 10(1):e1003903.
    OpenUrlCrossRefPubMed
  2. ↵
    1. Altieri, M.A.,
    2. C.I. Nicholls,
    3. A. Henao, and
    4. M.A. Lana
    . 2015. Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development 35:869-890.
    OpenUrl
  3. ↵
    1. Alyokhin A.,
    2. B. Nault, and
    3. B. Brown
    . 2019. Soil conservation practices for insect pest management in highly disturbed agroecosystems - a review. Entomologica Experimentalis et Applicata 168:7-27. https://doi.org/10.1111/eea.12863.
    OpenUrl
  4. ↵
    1. Anagnostakis, S.L.
    1987. Chestnut blight: The classical problem of an introduced pathogen. Mycologia 79(1):23–37.
    OpenUrlCrossRefWeb of Science
  5. ↵
    1. Basche, A.D.,
    2. G.E. Roesch-McNally,
    3. L.A. Pease,
    4. C.D. Eidson,
    5. G.B. Lahdou,
    6. M.W. Dunbar,
    7. T.J. Frank, et al.
    2014. Challenges and opportunities in transdisciplinary science: The experience of next generation scientists in an agriculture and climate research collaboration. Journal of Soil and Water Conservation 69(6):176A-179A. https://doi.org/10.2489/jswc.69.6.176A.
    OpenUrlFREE Full Text
  6. ↵
    1. Battisti, A.,
    2. M. Stastny,
    3. E. Buffo, and
    4. S. Larsson
    . 2006. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology 12:662-671.
    OpenUrlCrossRefWeb of Science
  7. ↵
    1. Bebber, D.P.,
    2. M.A.T. Ramotowski, and
    3. S.J. Gurr
    . 2013. Crop pests and pathogens move polewards in a warming world. Nature Climate Change 3(11):985–988.
    OpenUrlCrossRef
  8. ↵
    1. L. Ziska, and
    2. J.L. Dukes
    1. Blumenthal, D.M., and
    2. J.A. Kray
    . 2014. Climate change, plant traits, and invasion in natural and agricultural ecosystems. In Invasive species and global climate change, eds. L. Ziska, and J.L. Dukes, p. 219-231. Wallingford, UK: CABI Press.
  9. ↵
    1. Blumenthal D.M.,
    2. J.A. Kray, and
    3. W. Ortmans
    . 2016. Cheatgrass is favored by warming but not CO2 enrichment in a semi-arid grassland. Global Change Biology 22:3026–3038.
  10. ↵
    1. Bowers, M.,
    2. N. Cavallaro, and
    3. S. Ramaswamy
    . 2014. The National Institute of Food and Agriculture: Addressing the agricultural impacts and vulnerability to climate change. Journal of Soil and Water Conservation 69(6):167A-169A. https://doi.org/10.2489/jswc.69.6.167A.
    OpenUrlFREE Full Text
  11. ↵
    1. Bradley, B.A.,
    2. D.M. Blumenthal,
    3. D.S. Wilcove, and
    4. L.H. Ziska
    . 2010. Predicting plant invasions in an era of global change. Trends in Ecology & Evolution 25:310–318. https://doi.org/10.1016/j.tree.2009.12.003.
    OpenUrl
  12. ↵
    1. Brasier, C.
    1995. Episodic selection as a force in fungal microevolution, with special reference to clonal speciation and hybrid introgression. Canadian Journal of Botany 73(S2):S1213–S1221.
    OpenUrlCrossRef
  13. ↵
    1. Britt, K.,
    2. S. Gebben,
    3. A. Levy,
    4. M. Al Rwahnih, and
    5. O. Batuman
    . 2020. The detection and surveillance of Asian citrus psyllid (Diaphorina citri)—Associated viruses in Florida citrus groves. Frontiers in Plant Science 10(January):1–12.
    OpenUrl
  14. ↵
    1. Burdon, J.J., and
    2. J. Zhan
    . 2020. Climate change and disease in plant communities. PLoS Biol 18(11): e3000949. https://doi.org/10.1371/journal.pbio.3000949.
    OpenUrl
  15. ↵
    1. Burgiel, S.W., and
    2. A.A. Muir
    . 2010. Invasive species, climate change and ecosystem-based adaptation: Addressing multiple drivers of global change. Washington, DC, US, and Nairobi, Kenya: Global Invasive Species Programme (GISP). ISBN: 978-92-9059-287-7.
  16. ↵
    1. Chakraborty, S.
    2013. Migrate or evolve: Options for plant pathogens under climate change. Global Change Biology 19(7):1985–2000.
    OpenUrl
  17. ↵
    1. Chakraborty, S., and
    2. A. Newton
    . 2011. Climate change, plant diseases and food security: An overview. Plant Pathology 60(1):2–14.
    OpenUrl
  18. ↵
    1. Chidawanyika, F.,
    2. P. Mudavanhu, and
    3. C. Nyamukondiwa
    . 2019. Climate change as a driver of bottom-up and top-down factors in agricultural landscapes and the fate of host-parasitoid interactions. Frontiers in Ecology and Evolution 7:80. https://doi.org/10.3389/fevo.2019.00080.
    OpenUrl
  19. ↵
    1. Clements, D.R., and
    2. A. DiTommaso
    . 2011. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted? Weed Research 51:227-240. https://doi.org/10.1111/j.1365-3180.2011.00850.x.
    OpenUrlCrossRefWeb of Science
  20. ↵
    1. Clements, D.R.,
    2. A. DiTommaso,
    3. N. Jordan,
    4. B.D. Booth,
    5. J. Cardina,
    6. D. Doohan,
    7. C.L Mohler, et al.
    2004. Adaptability of plants invading North American cropland. Agriculture, Ecosystems and Environment 104:379–398. https://doi.org/10.1016/j.agee.2004.03.003.
    OpenUrl
  21. ↵
    1. Clements, D.R., and
    2. V.L Jones
    . 2021. Rapid evolution of invasive weeds under climate change: present evidence and future research needs. Frontiers in Agronomy 3:664034. DOI:10.3389/fagro.2021.664034.
    OpenUrlCrossRef
  22. ↵
    1. Coakley, S.M.,
    2. H. Scherm, and
    3. S. Chakraborty
    . 1999. Climate change and plant disease management. Annual Review of Phytopathology 37(1999):399–426.
    OpenUrlCrossRefPubMedWeb of Science
  23. ↵
    1. Cobb, R.C.,
    2. R.K. Meentemeyer, and
    3. D.M. Rizzo
    . 2016. Wildfire and forest disease interaction lead to greater loss of soil nutrients and carbon. Oecologia 182(1):265-76.
    OpenUrl
  24. ↵
    1. Corbin, J., and
    2. C.M. D’Antonio
    . 2004. Competition between native perennial and exotic annual grasses: Implications for an historical invasion. Ecology 85:1273-1283.
    OpenUrlCrossRefWeb of Science
  25. ↵
    1. D. Pimentel and
    2. R. Peshin
    1. Culliney, T.W.
    2014. Crop losses to arthropods. In Integrated Pest Management, Pesticide Problems, Vol. 3, eds. D. Pimentel and R. Peshin, 201-225. Dordrecht: Springer.
    OpenUrl
  26. ↵
    1. Desprez-Loustau, M.L.,
    2. B. Marçais,
    3. L.M. Nageleisen,
    4. D. Piou, and
    5. A. Vannini
    . 2006. Interactive effects of drought and pathogens in forest trees. Annals of Forest Science 63(6):597–612.
    OpenUrl
  27. ↵
    1. Deutsch, C.A.,
    2. J.J. Tewksbury,
    3. M. Tigchelaar,
    4. D.S. Battisti,
    5. S.C. Merrill,
    6. R.B. Huey, and
    7. R.L. Naylor
    . 2018. Increase in crop losses to insect pests in a warming climate. Science 361:916-919.
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Dudney, J.,
    2. C.E. Willing,
    3. A.J. Das,
    4. A.M. Latimer,
    5. J.C.B. Nesmith, and
    6. J.J. Battles
    . 2021. Nonlinear shifts in infectious rust disease due to climate change. Nature Communications 12(1):5102.
    OpenUrl
  29. ↵
    1. Dukes, J.S. and
    2. L.H. Ziska
    . 2011. Weed Biology and Climate Change. Chichester, UK: Wiley-Blackwell.
  30. ↵
    1. Eigenbrode, S.D.,
    2. L.W. Morton, and
    3. T.A. Martin
    . 2014. Big interdisciplinary to address climate change and agriculture: Lessons from three USDA coordinated agricultural projects. Journal of Soil and Water Conservation 69(6):170A-175A. https://doi.org/10.2489/jswc.69.6.170A.
    OpenUrlFREE Full Text
  31. ↵
    1. FAO (Food and Agriculture Organization of the United Nations)
    . 2018. Climate smart crop production. In FAO, 2017 Climate Smart Agriculture Sourcebook, 2nd Ed. with “living” online updates. http://www.fao.org/climate-smart-agriculture-sourcebook/en/.
  32. ↵
    1. FAO
    . 2021. New standards to curb the global spread of plant pests and diseases. April 3, 2019. Rome: FAO. http://www.fao.org/news/story/en/item/1187738/icode/.
  33. ↵
    1. Flanagan, N.E.,
    2. C.J. Richardson, and
    3. M. Ho
    . 2015. Connecting differential responses of native and invasive riparian plants to climate change and environmental alteration. Ecological Applications 753-767.
  34. ↵
    1. M. Vilà and
    2. P.E. Hulme
    1. Fried, G.,
    2. B. Chauvel,
    3. P. Reynaud, and
    4. I. Sache
    . 2017. Decreases in crop production by nonnative weeds, pests, and pathogens. In Impact of Biological Invasions on Ecosystem Services, eds. M. Vilà and P.E. Hulme, p. 83-101. Berlin: Springer.
  35. ↵
    1. Gallego-Tevár, B.,
    2. M.D. Infante-Izquierdo,
    3. E. Figueroa,
    4. F.J.J. Nivea,
    5. A.F. Muñoz-Rodriguez,
    6. B.J. Grewell, and
    7. J.M. Castillo
    . 2019. Some like it hot: Maternal-switching with climate change modifies formation of invasive Spartina hybrids. Frontiers in Plant Science 10:484. https://doi.org/10.3389/fpls.2019.00484.
    OpenUrl
  36. ↵
    1. Garrett, K.A.,
    2. R.I. Alcalá-Briseño,
    3. K.F. Andersen,
    4. R.A. Choudhury,
    5. W. Dantes,
    6. J. Fayette,
    7. J.C. Fulton,
    8. R. Poudel, and
    9. C.G. Staub
    . 2020. Adapting disease management systems under global change. In Emerging Plant Diseases and Global Food Security, 31–50. St. Paul, MN: The American Phytopathological Society.
  37. ↵
    1. Garrett, K.A.,
    2. S.P. Dendy,
    3. E.E. Frank,
    4. M.N. Rouse, and
    5. S.E. Travers
    . 2006. Climate change effects on plant disease: Genomes to ecosystems. Annual Review of Phytopathology 44:489–509.
  38. ↵
    1. Gilbert, G.S., and
    2. I.M. Parker
    . 2010. Rapid evolution in a plant-pathogen interaction and the consequences for introduced host species. Evolutionary Applications 3(2):144-156. doi:10.1111/j.1752-4571.2009.00107.x.
    OpenUrlCrossRef
  39. ↵
    1. Hernandez Nopsa, J.F.,
    2. S. Thomas-Sharma, and
    3. K.A. Garrett
    . 2014. Climate change and plant disease. Encyclopedia of Agriculture and Food Systems 2:232–243.
  40. ↵
    1. J.O. Luken and
    2. J.W. Thieret
    1. Huenneke, L.F.
    1997. Outlook for plant invasions: Interactions with other agents of global change. In Assessment and Management of Plant Invasions, eds. J.O. Luken and J.W. Thieret, pp. 95-103. Springer-Verlag.
  41. ↵
    1. H.-O. Pörtner,
    2. D.C. Roberts,
    3. M. Tignor,
    4. E.S. Poloczanska,
    5. K. Mintenbeck,
    6. A. Alegría,
    7. M. Craig, et al.
    1. IPCC (Intergovernmental Panel on Climate Change)
    . 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, eds. H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, et al. Cambridge and New York: Cambridge University Press. https://www.ipcc.ch/report/ar6/wg2/.
  42. ↵
    1. IPPC Secretariat
    . 2021. Scientific review of the impact of climate change on plant pests – A global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. Scientific review of the impact of climate change on plant pests. Rome: Food and Agricultural Organization of the United Nations on behalf of the IPPC Secretariat.
  43. ↵
    1. Jactel, H.,
    2. J. Koricheva, and
    3. B. Castagneyrol
    . 2019. Responses of forest insect pests to climate change: Not so simple. Current Opinion in Insect Science 35:103-108.
    OpenUrl
  44. ↵
    1. Jeger, M.J.
    2022. The impact of climate change on disease in wild plant populations and communities. Plant Pathology 71(1):111–130, doi:10.1111/ppa.13434.
    OpenUrlCrossRef
  45. ↵
    1. Juroszek, P., and
    2. A. von Tiedemann
    . 2013. Plant pathogens, insect pests and weeds in a changing global climate: A review of approaches, challenges, research gaps, key studies and concepts. Journal of Agricultural Science 151:163-188. https://doi.org/10.1017/S0021859612000500.
    OpenUrl
  46. ↵
    1. Lehmann, P.,
    2. T. Ammunét,
    3. M. Barton,
    4. A. Battisti,
    5. S.D. Eigenbrode,
    6. J.U. Jepsen,
    7. G. Kalinkat,
    8. S. Neuvonen,
    9. P. Niemelä,
    10. J.S. Terblanche, and
    11. B. Økland
    . 2020. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment 18:141-150.
    OpenUrl
  47. ↵
    1. Padmanabhan, S.Y.
    1973. The great Bengal famine. Annual Review of Phytopathology 11(1):11–24.
    OpenUrlCrossRefWeb of Science
  48. ↵
    1. Pauchard, A.,
    2. C. Kueffer,
    3. H. Dietz,
    4. C.C. Daehler,
    5. J. Alexander,
    6. P.J. Edwards,
    7. J.R. Arévalo, et al.
    2009. Ain’t no mountain high enough: Plant invasions reaching new elevations. Frontiers in Ecology and the Environment 7:479-486. https://doi.org/10.1890/080072.
    OpenUrlCrossRefWeb of Science
  49. ↵
    1. Pélissié B.,
    2. M.S. Crossley,
    3. Z.P. Cohen, and
    4. S.D. Schoville
    . 2018. Rapid evolution in insect pests: The importance of space and time in population genomics studies. Current Opinion in Insect Science 26:8-16. https://doi.org/10.1016/j.cois.2017.12.008.
    OpenUrl
  50. ↵
    1. Saville, A.C.,
    2. M.D. Martin, and
    3. J.B. Ristaino
    . 2016. Historic late blight outbreaks caused by a widespread dominant lineage of Phytophthora infestans (Mont.) de Bary. PLoS ONE 11(12):1–22.
    OpenUrlCrossRefPubMed
  51. ↵
    1. Shaw, M.W., and
    2. T.M. Osborne
    . 2011. Geographic distribution of plant pathogens in response to climate change. Plant Pathology 60(1):31–43.
    OpenUrl
  52. ↵
    1. Shea, E.C.
    2014. Adaptive management: the cornerstone of climate-smart agriculture. Journal of Soil and Water Conservation 69(6):198A-199A. https://doi.org/10.2489/jswc.69.6.198A.
    OpenUrlFREE Full Text
  53. ↵
    1. Skendžić, S.,
    2. M. Zovko,
    3. I. Pajač Živkovič,
    4. V. Lešič, and
    5. D. Lemič
    . 2021. The impact of climate change on agricultural insect pests. Insects 12(5):440. https://doi.org/10.3390/insects12050440.
    OpenUrl
  54. ↵
    1. Song L.,
    2. J. Wu,
    3. L. Changhan,
    4. F. Li,
    5. S. Peng, and
    6. B-M. Chen
    . 2009. Different responses of invasive and native species to elevated CO2 concentration. Acta Oecologia 35:128–135
    OpenUrl
  55. ↵
    1. Stevens, C.J.,
    2. I.D. Thomas, and
    3. J. Storkey
    . 2018. Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels. Functional Ecology 32:1757-1769. DOI: 10.1111/1365-2435.13063.
    OpenUrlCrossRef
  56. ↵
    1. Stewart, I.T.,
    2. J. Rogers, and
    3. A. Graham
    . 2020: Water security under severe drought and climate change: Disparate impacts of the recent severe drought on environmental flows and water supplies in Central California. Journal of Hydrology X(7):100054. https://doi.org/10.1016/j.hydroa.2020.100054.
  57. ↵
    1. Tainter, F.H., and
    2. F.A. Baker
    . 1996. Principles of forest pathology, 1-805. New York: John Wiley.
  58. ↵
    1. Thines, M.
    2019. An evolutionary framework for host shifts – Jumping ships for survival. New Phytologist 224(2):605–617.
    OpenUrlCrossRef
  59. ↵
    1. van Kleunen, M.,
    2. O. Bossdorf, and
    3. W. Dawson
    . 2018. The ecology and evolution of alien plants. Annual Review of Ecology, Evolution and Systematics 49:25-47.
    OpenUrlCrossRef
  60. ↵
    1. Vilà, M.,
    2. E.M. Beaury,
    3. D.M. Blumenthal,
    4. B. Bradley,
    5. R. Early,
    6. B.B. Laginhas,
    7. A. Trillo, et al.
    2021. Understanding the combined impacts of weeds and climate change on crops. Environmental Research Letters 16(3):034043. DOI:10.1088/1748-9326/abe14b.
    OpenUrlCrossRef
  61. ↵
    1. Vitousek, P.M.,
    2. C.M. D’Antonio,
    3. L.L. Loope,
    4. M. Rejmanek, and
    5. R. Westbrooks
    . 1997. Introduced species: A significant component of human-caused global change. New Zealand Journal of Ecology 21:1–16.
  62. ↵
    1. Walthall, C.L.,
    2. J. Hatfield,
    3. P. Backlund,
    4. L. Lengnick,
    5. E. Marshall,
    6. M. Walsh,
    7. S. Adkins, et al.
    2013. Climate Change and Agriculture in the United States: Effects and Adaptation. USDA Technical Bulletin 1935. Washington, DC: USDA.
  63. ↵
    1. Welch, K.D., and
    2. J.D. Harwood
    . 2014. Temporal dynamics of natural enemy–pest interactions in a changing environment. Biological Control 75:18-27.
    OpenUrl
  64. ↵
    1. Young, S.L.,
    2. D.R. Clements, and
    3. A. DiTommaso
    . 2017. Climate dynamics, invader fitness, and ecosystem resistance in an invasion-factor framework. Invasive Plant Science and Management 10:215–231. DOI:10.1017/inp.2017.28.
    OpenUrlCrossRef
  65. ↵
    1. Zedler, J.B., and
    2. S. Kercher
    . 2004. Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences 23(5):431-452
    OpenUrl
  66. ↵
    1. Ziska, L.H.
    2016. The role of climate change and increasing atmospheric carbon dioxide on weed management: herbicide efficacy. Agriculture, Ecosystems, and Environment 231:304–309. DOI:10.1016/j.agee.2016.07.014.
    OpenUrlCrossRef
  67. ↵
    1. Ziska, L.H.,
    2. D.M. Blumenthal, and
    3. S.J. Franks
    . 2019. Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Science and Management 12:79–88. https://doi.org/10.1017/inp.2019.12.
    OpenUrl
  68. ↵
    1. Ziska, L.H., and
    2. J.S. Dukes
    , eds. 2014. Invasive Species and Global Climate Change. Wallingford, UK: CABI.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 78 (2)
Journal of Soil and Water Conservation
Vol. 78, Issue 2
March/April 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Climate and pest interactions pose a cross-landscape management challenge to soil and water conservation
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Climate and pest interactions pose a cross-landscape management challenge to soil and water conservation
Joshua W. Campbell, Michael R. Fulcher, Brenda J. Grewell, Stephen L. Young
Journal of Soil and Water Conservation Mar 2023, 78 (2) 39A-44A; DOI: 10.2489/jswc.2023.1025A

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Climate and pest interactions pose a cross-landscape management challenge to soil and water conservation
Joshua W. Campbell, Michael R. Fulcher, Brenda J. Grewell, Stephen L. Young
Journal of Soil and Water Conservation Mar 2023, 78 (2) 39A-44A; DOI: 10.2489/jswc.2023.1025A
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • PEST MOVEMENT
    • PEST ADAPTION AND SURVIVAL
    • THE CONSERVATION OF SOIL AND WATER
    • FUTURE DIRECTIONS
    • CONCLUSIONS
    • ACKNOWLEDGEMENTS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

A Section

  • Global connections: A case for international perspectives
  • Sustainable and regenerative agriculture: Tools to address food insecurity and climate change
Show more A Section

Feature

  • Sustainable and regenerative agriculture: Tools to address food insecurity and climate change
  • Environmental justice, climate change, and agriculture
Show more Feature

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society