Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Gully erosion susceptibility prediction in Mollisols using machine learning models

Y. Wang, Y. Zhang and H. Chen
Journal of Soil and Water Conservation September 2023, 78 (5) 385-396; DOI: https://doi.org/10.2489/jswc.2023.00019
Y. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Amiri, M.,
    2. H.R. Pourghasemi,
    3. G.A. Ghanbarian, and
    4. S.F. Afzali
    . 2019. Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma 340:55-69. https://doi.org/10.1016/j.geoderma.2018.12.042.
    OpenUrl
  2. ↵
    1. Angermueller, C.,
    2. T. Pärnamaa,
    3. L. Parts, and
    4. O. Stegle
    . 2016. Deep learning for computational biology. Molecular Systems Biology 12(7):878. https://doi.org/10.15252/msb:20156651.
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Arabameri, A.,
    2. B. Pradhan,
    3. K. Rezaei,
    4. M. Yamani,
    5. H.R. Pourghasemi, and
    6. L. Lombardo
    . 2018. Spatial modelling of gully erosion using evidential belief function, logistic regression and new ensemble EBF-LRalgorithm. Land Degradation & Development 29:4035-4049. https://doi.org/10.1002/ldr.3151.
    OpenUrl
  4. ↵
    1. Avand, M.,
    2. S. Janizadeh,
    3. S.A. Naghibi,
    4. H.R. Pourghasemi,
    5. S. Khosrobeigi Bozchaloei, and
    6. T. Blaschke
    . 2019. A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water 11:2076. https://doi.org/10.3390/w11102076.
    OpenUrl
  5. ↵
    1. Breiman, L.
    2001. Random forests. Machine Learning 45(l):5-32.
    OpenUrl
  6. ↵
    1. Bunker, R.P., and
    2. F. Thabtah
    . 2019. A machine learning framework for sport result prediction. Applied Computing Informatics 15:27-33. https://doi.org/10.1016/j.aci.2017.09.005.
    OpenUrl
  7. ↵
    1. Buston, P.M., and
    2. J. Elith
    . 2011. Determinants of reproductive success in dominant pairs of clownfish: A boosted regression tree analysis. Journal of Animal Ecology 80:528-538. https://doi.org/10.1111/j.1365-2656.2011.01803.x.
    OpenUrlCrossRefPubMedWeb of Science
  8. ↵
    1. Chai, T., and
    2. R.R. Draxler
    . 2014. Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geoscience Model Development (GMD) 7(3):1247-1250. https://doi.org/10.5194/gmd-7-1247-2014.
    OpenUrl
  9. ↵
    1. Chen, W.,
    2. X. Lei,
    3. R. Chakrabortty,
    4. S.C. Pal,
    5. M. Sahana, and
    6. S. Janizadeh
    . 2021. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. Journal of Environmental Management 284:112015. https://doi.org/10.1016/j.jenvman.2021.112015.
    OpenUrl
  10. ↵
    1. Cherif, I.L., and
    2. A. Kortebi
    . 2019. On Using eXtreme Gradient Boosting (XGBoost) Machine Learning Algorithm for Home Network Traffic Classification. 2019 Wireless Days (WD), Manchester, UK, 2019, pp. 1-6. https://doi.org/10.1109/WD.2019.8734193.
  11. ↵
    1. Chlingaryan, A.,
    2. S. Sukkarieh, and
    3. B. Whelan
    . 2018. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computer and Electronics in Agriculture 151:61-69. https://doi.org/10.1016/j.compag.2018.05.012.
    OpenUrl
  12. ↵
    1. Chung, C.-J.F., and
    2. A.G. Fabbri
    . 2003. Validation of spatial prediction models for landslide hazard mapping. Natural Hazards 30(3):451-472. https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b.
    OpenUrlCrossRefGeoRefWeb of Science
  13. ↵
    1. Cui, J.,
    2. Y. Li,
    3. S. Wang,
    4. Y. Chi,
    5. H. Hwang, and
    6. P. Wang
    . 2018. Directional preparation of anticoagulant-active sulfated polysaccharides from Enteromorpha prolifera using artificial neural networks. Scientific Reports 8(1):1-9. https://doi.org/10.1038/s41598-018-21556-x.
    OpenUrlCrossRef
  14. ↵
    1. De Oliveira, M.F.,
    2. A.F. dos Santos,
    3. E.H. Kazama,
    4. G. de Souza Rolim, and
    5. R.P. da Silva
    . 2021. Determination of application volume for coffee plantations using artificial neural networks and remote sensing. Computers and Electronics in Agriculture 184:106096. https://doi.org/10.1016/j.compag.2021.106096.
    OpenUrl
  15. ↵
    1. Friedman, J.H., and
    2. J.J. Meulman
    . 2003. Multiple additive regression trees with application in epidemiology. Statistics in Medicine 22(9):1365-1381. https://doi.org/10.1002/sim.1501.
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    1. Gao, X.,
    2. Y. Xie,
    3. G. Liu,
    4. B. Liu, and
    5. X. Duan
    . 2015. Effects of soil erosion on soybean yield as estimated by simulating gradually eroded soil profiles. Soil & Tillage Research 145:126-134. https://doi.org/10.1016/j.still.2014.09.004.
    OpenUrl
  17. ↵
    1. Garosi, Y.,
    2. M. Sheklabadi,
    3. C. Conoscenti,
    4. H.R. Pourghasemi, and
    5. K. Van Oost
    . 2019. Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Science of the Total Environment 664:1117-1132. https://doi.org/10.1016/j.scitotenv.2019.02.093.
    OpenUrl
  18. ↵
    1. Garosi, Y.,
    2. M. Sheklabadi,
    3. H.R. Pourghasemi,
    4. A.A. Besalatpour,
    5. C. Conoscenti, and
    6. K. VanOost
    . 2018. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma 330:65-78. https://doi.org/10.1016/j.geoderma.2018.05.027.
    OpenUrl
  19. ↵
    1. Gayen, A.,
    2. H.R. Pourghasemi,
    3. S. Saha,
    4. S. Keesstra, and
    5. S. Bai
    . 2019. Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Science of the Total Environment 668:124-138. https://doi.org/10.1016/j.scitotenv.2019.02.436.
    OpenUrl
  20. ↵
    1. Gutiérrez, Á.G.,
    2. S. Schnabel, and
    3. J.F.L. Contador
    . 2009. Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies. Ecological Modelling 220:3630-3637. https://doi.org/10.1016/j.ecolmodel.2009.06.020.
    OpenUrl
  21. ↵
    1. Harel, O.
    2009. The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation. Journal of Applied Statistics 36(10):1109-1118. https://doi.org/10.1080/02664760802553000.
    OpenUrlCrossRef
  22. ↵
    1. Huang, J.C.,
    2. Y.C. Tsai,
    3. P.Y. Wu,
    4. Y.H. Lien,
    5. C.Y. Chien,
    6. C.F. Kuo,
    7. J.F. Hung,
    8. S.C. Chen, and
    9. C.H. Kuo
    . 2020. Predictive modeling of blood pressure during hemodialysis: A comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Computer Methods and Programs in Biomedicine 195:105536. https://doi.org/10.1016/j.cmpb.2020.105536.
    OpenUrl
  23. ↵
    1. Joachims, T.
    1997. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In Proceedings of the Fourteenth International Conference on Machine Learning (ICML), 143-151. San Francisco, CA: Morgan Kaufmann Publishers Inc.
  24. ↵
    1. Karatzoglou, A.,
    2. D. Meyer, and
    3. K. Hornik
    . 2006. Support vector machines in R. Journal of Statistical Software 15:1-28. https://doi.org/10.18637/jss.v015.i09.
    OpenUrl
  25. ↵
    1. Kubat, M.
    2017. An Introduction to Machine Learning. Cham, Switzerland: Springer Cham. https://doi.org/10.1007/978-3-319-63913-0.
  26. ↵
    1. Liu, P.,
    2. B. Fu,
    3. S.X. Yang,
    4. L. Deng,
    5. X. Zhong, and
    6. H. Zheng
    . 2021. Optimizing survival analysis of XGBoost for ties to predict disease progression of breast cancer. IEEE Transactions on Biomedical Engineering 68(1):148-60. https://doi.org/10.1109/TBME.2020.2993278.
    OpenUrl
  27. ↵
    1. Ministry of Water Resources (Chinese Academy of Sciences, Chinese Academy of Engineering)
    . 2010. Soil Erosion Prevention and Ecological Security in China: The Black Soil Region in Northeast China, 254-269. Beijing: Science Press.
  28. ↵
    1. Mittendorf, M.,
    2. U.D. Nielsen, and
    3. H.B. Bingham
    . 2022. Data-driven prediction of added-wave resistance on ships in oblique waves—A comparison between tree-based ensemble methods and artificial neural networks. Applied Ocean Research 118:102964. https://doi.org/10.1016/j.apor.2021.102964.
    OpenUrl
  29. ↵
    1. Mokarram, M., and
    2. A.R. Zarei
    . 2021. Determining prone areas to gully erosion and the impact of land use change on it by using multiple-criteria decision-making algorithm in arid and semi-arid regions. Geoderma 403:115379. https://doi.org/10.1016/j.geoderma.2021.115379.
    OpenUrl
  30. ↵
    1. Moore, I.D.,
    2. R.B. Grayson, and
    3. A.R. Ladson
    . 1991. Digital terrain modeling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes 5:3-30. https://doi.org/10.1002/hyp.3360050103.
    OpenUrlCrossRefGeoRefWeb of Science
  31. ↵
    1. Nearing, M.A.,
    2. Y. Xie,
    3. B. Liu, and
    4. Y. Ye
    . 2017. Natural and anthropogenic rates of soil erosion. International Soil and Water Conservation Research 5:77-84. https://doi.org/10.1016/j.iswcr.2017.04.001.
    OpenUrl
  32. ↵
    1. Nhu, V.-H.,
    2. S. Janizadeh,
    3. M. Avand,
    4. W. Chen,
    5. M. Farzin,
    6. E. Omidvar,
    7. A. Shirzadi,
    8. H. Shahabi,
    9. J.J. Clague,
    10. A. Jaafari,
    11. F. Mansoorypoor,
    12. B.T. Pham,
    13. B.B. Ahmad, and
    14. S. Lee
    . 2020. GIS-based gully erosion susceptibility mapping: A comparison of computational ensemble data mining models. Applied Science 10:2039. https://doi.org/10.3390/app10062039.
    OpenUrl
  33. ↵
    1. Niu, L.,
    2. Y. Guo,
    3. Y. Li,
    4. C. Wang,
    5. Q. Hu,
    6. L. Fan,
    7. L. Wang, and
    8. N. Yang
    . 2021. Degradation of river ecological quality in Tibet Plateau with overgrazing: A quantitative assessment using biotic integrity index improved by random forest. Ecological Indicators 120:106948. https://doi.org/10.1016/j.ecolind.2020.106948.
    OpenUrl
  34. ↵
    1. Oludolapo, O.A.,
    2. A.A. Jimoh, and
    3. P.A. Kholopane
    . 2012. Comparing performance of MLPNN and RBFNN neural network models for predicting South Africa’s energy consumption. Journal of Energy in Southern Africa 23:40-46. https://doi.org/10.17159/2413-3051/2012/V23I3A3171.
    OpenUrl
  35. ↵
    1. Paul, G.C.,
    2. S. Saha, and
    3. T.K. Hembram
    . 2019. Application of the GIS-based probabilistic models for mapping the flood susceptibility in Bansloi sub-basin of Ganga-Bhagirathi River and their comparison. Remote Sensing in Earth System Science 2(2-3):120-146. https://doi.org/10.1007/s41976-019-00018-6.
    OpenUrl
  36. ↵
    1. Poesen, J.
    2018. Soil erosion in the anthropocene: Research needs. Earth Surface Processes and Landforms 43:64-84. https://doi.org/10.1002/esp.4250.
    OpenUrl
  37. ↵
    1. Pourghasemi, H.R., and
    2. M. Rossi
    . 2017a. Landslide susceptibility modeling in a landslide prone area in Mazandarn Province, north of Iran: A comparison between GLM, GAM, MARS, and M-AHP methods. Theoretical and Applied Climatology 130(1-2):609-633. https://doi.org/10.1007/s00704-016-1919-2.
    OpenUrl
  38. ↵
    1. Pourghasemi, H.R.,
    2. N. Sadhasivam,
    3. N. Kariminejad, and
    4. A.L. Collins
    . 2020. Gully erosion spatial modeling: Role of machine learning algorithms in selection of the best controlling factors and modeling process. Geoscience Frontiers 11:2207-2219. https://doi.org/10.1016/j.gsf.2020.03.005.
    OpenUrl
  39. ↵
    1. Pourghasemi, H.R.,
    2. S. Yousefi,
    3. A. Kornejady, and
    4. A. Cerd
    . 2017b. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Science of the Total Environment 609:764-775. https://doi.org/10.1016/j.scitotenv.2017.07.198.
    OpenUrl
  40. ↵
    1. Rahmati, O.,
    2. A. Haghizadeh,
    3. H.R. Pourghasemi, and
    4. F. Noormohamadi
    . 2016. Gully erosion susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison. Natural Hazards 82:1231-1258. https://doi.org/10.1007/s11069-016-2239-7.
    OpenUrl
  41. ↵
    1. Rouhani, H.,
    2. A. Fathabadi, and
    3. J. Baartman
    . 2021. A wrapper feature selection approach for efficient modelling of gully erosion susceptibility mapping. Progress in Physical Geography: Earth and Environment 45(4). https://doi.org/10.1177/0309133320979897.
  42. ↵
    1. J.K. Rout,
    2. M. Rout, and
    3. H. Das
    1. Roy, P.,
    2. R. Chakrabortty,
    3. I. Chowdhuri,
    4. S. Malik,
    5. B. Das, and
    6. S.C. Pal
    . 2020. Development of different machine learning ensemble classifier for gully erosion susceptibility in Gandheswari watershed of West Bengal, India. In Machine Learning for Intelligent Decision Science, Algorithms for Intelligent Systems, ed. J.K. Rout, M. Rout, and H. Das, 1-26. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-3689-2_1.
  43. ↵
    1. Saha, S.
    2017. Groundwater potential mapping using analytical hierarchical process: A study on Md. Bazar Block of Birbhum District, West Bengal. Spatial Information Research 25(4):615-626. https://doi.org/10.1007/s41324-017-0127-1.
    OpenUrl
  44. ↵
    1. Soleimanpour, S.M.,
    2. H.R. Pourghasemi, and
    3. M. Zare
    . 2021. A comparative assessment of gully erosion spatial predictive modeling using statistical and machine learning models. Catena 207:105679. https://doi.org/10.1016/j.catena.2021.105679.
    OpenUrl
  45. ↵
    1. Stojić, A.,
    2. N. Stanić,
    3. G. Vuković,
    4. S. Stanišić,
    5. M. Perišić,
    6. A. Šoštarić, and
    7. L. Lazić
    . 2019. Explainable extreme gradient boosting tree-based prediction of toluene, ethylbenzene and xylene wet deposition. Science of the Total Environment 653:140-147. https://doi.org/10.1016/j.scitotenv.2018.10.368.
    OpenUrl
  46. ↵
    1. Sun, N.,
    2. W. Zhu, and
    3. Q. Cheng
    . 2018. GF-1 and Landsat observed a 40-year wetland spatiotemporal variation and its coupled environmental factors in Yangtze River estuary. Estuarine Coastal and Shelf Science 207:30-39. https://doi.org/10.1016/j.ecss.2018.03.022.
    OpenUrl
  47. ↵
    1. Tang, H.,
    2. X. Meng,
    3. X. Su,
    4. T. Ma,
    5. H. Liu,
    6. Y. Bao,
    7. M. Zhang,
    8. X. Zhang, and
    9. H. Huo
    . 2021. Hyperspectral prediction on soil organic matter of different types using CARS algorithm. Transactions of the Chinese Society of Agricultural Engineering (CSAE) 37(2):105-113 (in Chinese with English abstract). https://doi.org/10.11975/j.issn.1002-6819.2021.2.013.
    OpenUrl
    1. Tang, L., and
    2. S. Na
    . 2021. Comparison of machine learning methods for ground settlement prediction with different tunneling datasets. Journal of Rock Mechanics and Geotechnical Engineering 13:1274-1289. https://doi.org/10.1016/j.jrmge.2021.08.006.
    OpenUrl
  48. ↵
    1. Teimouri, M., and
    2. A. Kornejady
    . 2019. The dilemma of determining the superiority of data mining models: Optimal sampling balance and end users’ perspectives matter. Bulletin of Engineering Geology and the Environment 79():1707-1720. https://doi.org/10.1007/s10064-019-01687-9.
    OpenUrl
  49. ↵
    1. Tien Bui, D.,
    2. B. Pradhan,
    3. H. Nampak,
    4. Q.T. Bui,
    5. Q.A. Tran, and
    6. Q.P. Nguyen
    . 2016. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology 540:317-330. https://doi.org/10.1016/j.jhydrol.2016.06.027.
    OpenUrl
  50. ↵
    1. Vapnik, V.
    1995. The Nature of Statistical Learning Theory. New York: Springer Science & Business Media.
  51. ↵
    1. Wen, Y.,
    2. T. Kasielke,
    3. H. Li,
    4. H. Zepp, and
    5. B. Zhang
    . 2021. A case study on history and rates of gully erosion in northeast China. Land degradation and Development 32:4254-4266. https://doi.org/10.1002/ldr.4031.
    OpenUrl
  52. ↵
    1. Yang, T.,
    2. A.A. Asanjan,
    3. M. Faridzad,
    4. N. Hayatbini,
    5. X. Gao, and
    6. S. Sorooshian
    . 2017. An enhanced artificial neural network with a shuffled complex evolutionary global optimization with principal component analysis. Information Sciences 418-419:302-316. https://doi.org/10.1016/j.ins.2017.08.003.
    OpenUrl
  53. ↵
    1. Yang, A.,
    2. C. Wang,
    3. G. Pang,
    4. Y. Long,
    5. L. Wang,
    6. R.M. Cruse, and
    7. Q. Yang
    . 2021. Gully erosion susceptibility mapping in highly complex terrain using machine learning models. ISPRS International Journal of Geo-Information 10:680. https://doi.org/10.3390/ijgi10100680.
    OpenUrl
  54. ↵
    1. Zabihi, M.,
    2. F. Mirchooli,
    3. A. Motevalli,
    4. A.K. Darvishan,
    5. H.R. Pourghasemi,
    6. M.A. Zakeri, and
    7. F. Sadighi
    . 2018. Spatial modelling of gully erosion in Mazandaran Province, northern Iran. Catena 161:1-13. https://doi.org/10.1016/j.catena.2017.10.010.
    OpenUrl
  55. ↵
    1. H.R. Pourghasemi and
    2. M. Rossi
    1. Zabihi, M.,
    2. H.R. Pourghasemi,
    3. A. Motevalli, and
    4. M.A. Zakeri
    . 2019. Gully erosion modeling using GIS-based data mining techniques in northern Iran: A comparison between boosted regression tree and multivariate adaptive regression spline. In Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques, ed. H.R. Pourghasemi and M. Rossi, 1-26. Cham: Springer. https://doi.org/10.1007/978-3-319-73383-8_1.
  56. ↵
    1. Zhang, K.L., and
    2. H.Y. Liu
    . 2018. Research progresses and prospects on freeze-thaw erosion in the black soil region of northeast China. Science of Soil and Water Conservation 16(1):17-24. https://doi.org/10.13254/j.jare.2017.0328.
    OpenUrl
  57. ↵
    1. Zhang, Y.,
    2. B. Sui,
    3. H. Shen, and
    4. L. Ouyang
    . 2019. Mapping stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors. Computers and Electronics in Agriculture 160:23-30. https://doi.org/10.1016/j.compag.2019.03.015.
    OpenUrl
    1. Zhang, H.,
    2. P. Wu,
    3. A. Yin,
    4. X. Yang,
    5. M. Zhang, and
    6. C. Gao
    . 2017. Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Science of the Total Environment 592:704-713. https://doi.org/10.1016/j.scitotenv.2017.02.146.
    OpenUrl
  58. ↵
    1. Zhang, Y.,
    2. C. Xia,
    3. X. Zhang,
    4. X. Cheng,
    5. G. Feng,
    6. Y. Wang, and
    7. Q. Gao
    . 2021. Estimating the maize biomass by crop height and narrowband vegetation indices derived from UAV-based hyperspectral images. Ecological Indicators 129:107985. https://doi.org/10.1016/j.ecolind.2021.107985.
    OpenUrl
  59. ↵
    1. Zhao, J.,
    2. M. Vanmaercke,
    3. L. Chen, and
    4. G. Govers
    . 2016. Vegetation cover and topography rather than human disturbance control gully density and sediment production on the Chinese Loess Plateau. Geomorphology 274:92-105. https://doi.org/10.1016/j.geomorph.2016.09.022.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 78 (5)
Journal of Soil and Water Conservation
Vol. 78, Issue 5
September/October 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Gully erosion susceptibility prediction in Mollisols using machine learning models
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Gully erosion susceptibility prediction in Mollisols using machine learning models
Y. Wang, Y. Zhang, H. Chen
Journal of Soil and Water Conservation Sep 2023, 78 (5) 385-396; DOI: 10.2489/jswc.2023.00019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Gully erosion susceptibility prediction in Mollisols using machine learning models
Y. Wang, Y. Zhang, H. Chen
Journal of Soil and Water Conservation Sep 2023, 78 (5) 385-396; DOI: 10.2489/jswc.2023.00019
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Effects of economic and climatic factors on agricultural water use in arid regions
  • Sediment delivery ratios from forest road networks and harvesting operational features by physiographic region in the southeastern United States
Show more Research Section

Similar Articles

Keywords

  • controlling factors
  • gully erosion susceptibility
  • machine learning
  • Mollisols
  • relative importance

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society