Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Soil organic carbon and nitrogen storage estimated with the root-zone enrichment method under conventional and conservation land management across North Carolina

A.J. Franzluebbers
Journal of Soil and Water Conservation February 2023, 00064; DOI: https://doi.org/10.2489/jswc.2023.00064
A.J. Franzluebbers
is a research ecologist with the USDA Agricultural Research Service in Raleigh, North Carolina.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Agriculture is a globally dominating land use, so efforts to restore soil organic carbon (C) and nitrogen (N) lost through historical degradation could have enormous benefits to production and the environment, particularly by storing an organic reserve of nutrients in soil and avoiding the return of a small portion of biologically cycling C to the atmosphere. Estimates of soil organic C and N storage from conservation agricultural management are still limited when considered in proportion to the large diversity of environmental and edaphic conditions. A study was undertaken to determine the total, baseline, and root-zone enrichment stocks of soil organic C and N as affected by land use on 25 research stations distributed throughout North Carolina. Root-zone enrichment of organic matter is that portion influenced by contemporary management, and baseline is that portion dominated by pedogenesis. These fractions were compared with more traditional estimation procedures. Soil organic C and N were strongly negatively associated with sand concentration. Although physiographic region influenced overall soil C and N contents, variations in soil type and research station management within a region were equally influential. Soil organic C and N stocks were strongly affected by land use, which did not interact with the soil textural effect. Across the 25 research station locations, root-zone enrichment of soil organic C followed the order (p < 0.01) conventional-till cropland (11.1 Mg C ha−1) < no-till cropland (21.5 Mg C ha−1) < grassland (29.6 Mg C ha−1) < woodland (38.6 Mg C ha−1). Root-zone enrichment of total soil N followed a similar order, except grassland and woodland effects were reversed. Root-zone enrichment provided an integrated soil-profile assessment and a more targeted response of soil organic C and N change than did more traditional paired land use approaches, primarily due to separation of a variable pedogenic influence among sites. These point-in-time results gave a clear indication that conservation agricultural management approaches will foster surface soil organic C and N restoration across a diversity of soil types in the southeastern United States.

Key words:
  • carbon
  • grazing land
  • land management
  • nitrogen
  • no-till cropland
  • woodland
  • © 2023 by the Soil and Water Conservation Society
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 78 (2)
Journal of Soil and Water Conservation
Vol. 78, Issue 2
March/April 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Soil organic carbon and nitrogen storage estimated with the root-zone enrichment method under conventional and conservation land management across North Carolina
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Soil organic carbon and nitrogen storage estimated with the root-zone enrichment method under conventional and conservation land management across North Carolina
A.J. Franzluebbers
Journal of Soil and Water Conservation Feb 2023, 00064; DOI: 10.2489/jswc.2023.00064

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Soil organic carbon and nitrogen storage estimated with the root-zone enrichment method under conventional and conservation land management across North Carolina
A.J. Franzluebbers
Journal of Soil and Water Conservation Feb 2023, 00064; DOI: 10.2489/jswc.2023.00064
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Microbial respiration gives early indication of soil health improvement following cover crops
  • Aerial interseeding and planting green to enhance nitrogen capture and cover crop biomass carbon
  • Rice producer enrollment and retention in a USDA regional conservation partnership program in the southern United States
Show more Research Section

Similar Articles

Keywords

  • carbon
  • grazing land
  • land management
  • nitrogen
  • no-till cropland
  • woodland

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society