Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Characteristics of the soil macropore and root architecture of alpine meadows during the seasonal freezing-thawing process and their impact on water transport in the Qinghai Lake watershed, northeastern Qinghai–Tibet Plateau

X. Hu, L.-B. Jiang, Y.-D. Zhao and X.-Y. Li
Journal of Soil and Water Conservation May 2023, 00155; DOI: https://doi.org/10.2489/jswc.2023.00155
X. Hu
(corresponding author) is a soil scientist
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.-B. Jiang
are graduate students
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y.-D. Zhao
are graduate students
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X.-Y. Li
is a ecohydrology scientist, State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China; and School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing, China.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Low temperatures, freezing-thawing cycles, and short growing seasons characterize alpine soils. The mattic epipedon, a special diagnostic surface horizon with an intensive root network, is widely distributed in alpine ecosystems. Studies on the soil macropores and roots of the mattic epipedon layer in response to seasonal freezing-thawing processes on the Qinghai–Tibet Plateau are lacking. This study characterized the soil macropores and roots of alpine meadows during the seasonal freezing-thawing process using X-ray computed tomography and revealed the influence of soil macropores and roots structure on water transport in the mattic epipedon layer of the alpine meadows. The results showed that the soil pore distribution was more uniform during the unstable freezing stage (UFP) and the unstable thawing stage (UTP), whereas there was a clear mattic epipedon layer during the completely thawed stage (TP) and the completely frozen stage (FP). Soils in the TP stage had a higher total surface area density (0.1898 mm2 mm−3), length density (225.28 mm mm−3), node density (1,592 no. mm−3), and connectivity (0.3144) of soil macropores than those in the UFP, UTP, and FP stages. In the TP stages, the density, surface area density, branch density, length density, and node density of roots had significant correlations with the macroporosity, surface area density, length density, node density, and tortuosity of soil macropores. In the FP stage, there were no correlations between the root and soil macropore characteristics. Vertical water is expected to move more readily through the mattic epipedon in the TP stage than in the UFP and UTP stages. Roots were the preferential pathways for water transport into the soil layer of the alpine meadow. Therefore, the mattic epipedon is a key layer for water and nutrient storage and plays an important role in the water-holding function of the Tibetan Plateau due to its greater root development.

Key words:
  • mattic epipedon
  • root
  • seasonal freezing-thawing
  • soil macropore
  • soil water
  • © 2023 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 78 (3)
Journal of Soil and Water Conservation
Vol. 78, Issue 3
May/June 2023
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Characteristics of the soil macropore and root architecture of alpine meadows during the seasonal freezing-thawing process and their impact on water transport in the Qinghai Lake watershed, northeastern Qinghai–Tibet Plateau
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
15 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Characteristics of the soil macropore and root architecture of alpine meadows during the seasonal freezing-thawing process and their impact on water transport in the Qinghai Lake watershed, northeastern Qinghai–Tibet Plateau
X. Hu, L.-B. Jiang, Y.-D. Zhao, X.-Y. Li
Journal of Soil and Water Conservation May 2023, 00155; DOI: 10.2489/jswc.2023.00155

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Characteristics of the soil macropore and root architecture of alpine meadows during the seasonal freezing-thawing process and their impact on water transport in the Qinghai Lake watershed, northeastern Qinghai–Tibet Plateau
X. Hu, L.-B. Jiang, Y.-D. Zhao, X.-Y. Li
Journal of Soil and Water Conservation May 2023, 00155; DOI: 10.2489/jswc.2023.00155
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Effects of different vegetation restoration types on soil infiltration characteristics in severely eroded subtropical regions of South China
  • Understanding barriers to adoption of sustainable nitrogen management practices in California
  • Scaling up agricultural conservation: Predictors of cover crop use across time and space in the US upper Midwest
Show more Research Section

Similar Articles

Keywords

  • mattic epipedon
  • root
  • seasonal freezing-thawing
  • soil macropore
  • soil water

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society