Features

8 Viewpoint: Management of nonpoint-source pollution: What priority?
By Lee M. Thomas

9 A primer on nonpoint pollution
By Gordon Chesters and Linda-Jo Schierow

14 Nonpoint sources of water pollution
By Carl F. Myers, James Meek, Stuart Tuller, and Anne Weinberg

19 The off-site costs of soil erosion
By Edwin H. Clark, II

23 Agricultural nonpoint pollution control: An assessment
By John B. Braden and Donald L. Uchtmann

27 Policies for nonpoint-source water pollution control
By Winston Harrington, Alan J. Krupnick, and Henry M. Peskin

33 Paying the nonpoint pollution control bill
By Lawrence W. Libby

37 Nonpoint-source water pollution: A panel discussion

48 Salinity pollution from irrigated agriculture
By Mohamed T. El-Ashry, Jan van Schilfgaarde, and Susan Shiffman

53 State initiatives in nonpoint-source pollution control
By Roberta Savage

55 Nonpoint pollution control: The Wisconsin experience
By John G. Konrad, James S. Baumann, and Susan E. Bergquist

62 The conservation district role in nonpoint pollution control
By Mary M. Garner and Robert E. Williams

65 Setting agricultural pollution control priorities
By Leland L. Holstine and Susan M. Lowman

68 Selecting critical areas for nonpoint-source pollution control
By R. P. Maas, M. D. Smolen, and S. A. Dressing

72 Urban sediment and stormwater control: The Maryland experience
By Roy E. Benner

76 Successful water quality planning: An areawide perspective
By Miriam Koral Gensemer and Marianne Yamaguchi

79 Saving the Chesapeake: Maryland's agricultural education program
By W. L. Magee, R. A. Weismiller, and K. C. Gugulis

82 Organizing an information program for nonpoint pollution control
By Douglas D. Sorenson

84 Belgrave Creek: A successful nonpoint pollution control project in rural Ontario
By Mike Puddister

87 Managing riparian ecosystems to control nonpoint pollution
By Richard Lowrance, Ralph Leonard, and Joseph Sheridan

92 Nonpoint pollution control on public lands
By Bruce P. Van Haveren, Eric B. Janes, and William L. Jackson

95 Coliforms as an indicator of water quality in wildland streams
By Carolyn C. Bohn and John C. Buckhouse

98 Logging and water quality: State regulation in New England
By Lloyd C. Ireland

103 The Oregon Forest Practices Act
By Leo W. Wilson

105 Commentary: Agricultural nonpoint pollution control: A time for sticks?
By Ken Cook

107 Commentary: The politics of nonpoint pollution control: A local perspective
By Richard S. Howe

108 Commentary: Cost-effective targeting of agricultural nonpoint-source pollution controls
By A. M. Duda and R. J. Johnson
Commentary:
Agricultural nonpoint
pollution control:
Voluntary or
mandatory?
By Donald J. Epp and
James S. Shortle

Departments
4
Pen points

115
In the news

122
Upcoming

123
Books, etc.

176
The SCSA view

Research reports

125
Regional water quality
impacts of intensive
row-crop agriculture: A
Lake Erie Basin case
study
David B. Baker

132
Soil loss reduction in
Finley Creek, Indiana:
An economic analysis
of alternative policies
John Gary Lee, Stephen B.
Lovejoy, and David B.
Beasley

136
An accelerated
implementation
program for reducing
the diffuse-source
phosphorus load to
Lake Erie
D. L. Forster, T. J. Logan,
S. M. Yaksich, and J. R.
Adams

141
Sediment deposits in
drainage ditches: A
cropland externality
D. Lynn Forster and Girmai
Abraham

144
Subsidy and tax effects
of controlling stream
sedimentation in South
Carolina
R. D. Seale, J. W. Hubbard,
and E. H. Kaiser

148
Channel cross-section
changes in
Mississippi's Goodwin
Creek
Joseph B. Murphey and
Earl H. Grissinger

153
Dissolved nitrogen and
phosphorus in runoff
from watersheds in
conservation and
conventional tillage
E. E. Alberts and R. G.
Spomer

157
Conservation practice
effects on phosphorus
losses from Southern
Piedmont watersheds
G. W. Langdale, R. A.
Leonard, and A. W.
Thomas

161
Runoff, soil, and
nutrient losses from
rangeland and dry-
farmed cropland in the
Southern High Plains
O. R. Jones, H. V. Eck, S.
J. Smith, G. A. Coleman,
and V. L. Hauser

164
Best management
practices for controlling
nonpoint-source
pollution on forested
watersheds
James A. Lynch, Edward S.
Corbett, and Keith
Mussalam

168
Plant nutrient losses by
soil erosion and mass
movement after wildfire
J. D. Helvey, A. R.
Tiedemann, and T. D.
Anderson

173
Effects of livestock
wastes and agricultural
drainage on water
quality: An Ontario case
study
S. Thornley and A. W. Bos

Cover: As many as seven
colorants are visible in this
spectacular photograph of the
point where Lake
Huron empties into the St.
Clair River between Port
Huron, Michigan, on the
left and Sarina, Ontario, on
the right. The brown tones
toward the Michigan side
of the river are the result
of silty clay material
eroded from the Lake
Huron shoreline. The dark
middle of the channel is
the relatively clear water
from the open lake. The
white tones along the
Ontario shoreline are
created by suspended rock
material from a concrete
operation. The St. Clair
River connects the upper
Great Lakes and Lake Erie.
Photo by John Lyon, Ohio
State University.