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reservoir method as a function of ground-
water storage and a recession coefficient on 
subbasin scale (Liu 2004). The overland flow 
routing algorithm is adapted from a diffu-
sive transport approach proposed by Liu et 
al. (2003). The Muskingum method (Cunge 
1969) is used for channel flow routing.

Sediment yield caused by water erosion 
is estimated for each cell with the Modified 
Universal Soil Loss Equation (MUSLE) 
(Williams 1975) and is routed into channels 
with surface runoff. A simplified Bagnold 
stream power equation from Williams (1980) 
is used for sediment routing in stream chan-
nels, in which the maximum amount of 
sediment that can be transported from a 
reach segment is a function of the peak chan-
nel velocity (Neitsch et al. 2011).

Plant growth process in SEIMS is adapted 
from the SWAT model, which is a sim-
plified version of Environmental Policy 
Integrated Climate (EPIC) plant growth 
model (Williams 1995) and utilizes a single 
plant growth model to simulate all types of 
land covers.

The data necessary for watershed mod-
eling and calibration based on SEIMS (i.e., 
the spatial data such as DEM, soil, land use, 
and climate data, and site-monitoring data 
at the watershed outlet) were collected. 
The land use map was manually interpreted 
from Advanced Land Observation Satellite 
(ALOS) image derived in 2009 (Chen et 
al. 2013). The soil type map was from the 
Second National Soil Survey of Changting 
County with a scale of 1:50,000 (Chen et 
al. 2013). Soil properties such as mechanical 
composition and organic matter were mea-
sured from field samplings (Chen et al. 2013; 

Figure 4
Slope position units delineated in the Youwuzhen watershed.
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Xie et al. 2015). Other soil water character-
istics (e.g., soil hydraulic conductivity and 
field capacity) were calculated with the Soil-
Plant-Air-Water (SPAW) model (Saxton and 
Rawls 2006). Soil erodibility factors, cover 
management factors, and conservation prac-
tice factors for the USLE model were drawn 
from the study in this area by Chen and 
Zha (2016). Daily meteorological data and 
precipitation were derived from National 
Meteorological Information Center of 
China Meteorological Administration data 
and the local monitoring station, respectively. 
The periodic monitoring flow and sediment 
discharge data at the watershed outlet from 
2013 to 2015 were provided by the Soil and 
Water Conservation Bureau of Changting 
County, Fujian Province, China.

To calibrate the watershed model for the 
following spatial optimization of BMPs, we 
selected those periods with available data and 
rainstorms that had more than three consec-
utive days of rainfall and for which there were 
complete records of runoff generation and 
sediment yield. As a result, the years of 2013 
and 2014 were selected for watershed model 
calibration, and the year 2015 was selected 
for validation of the watershed model.

Model performance indicators such as 
Nash-Sutcliffe efficiency (NSE, equation 
1), percentage bias (PBIAS, equation 2), and 
root mean square error-standard deviation 
ratio (RSR, equation 3) recommended by 
Moriasi et al. (2007) were used to evaluate 
the watershed model:

NSE = 1 -
obs sim∑(Yi  -Yi    )

2
n

i=1

obs mean∑(Yi  -Y        )
2

n

i=1

, (1)

PBIAS = 

obs sim∑(Yi  -Yi    ) × 100
n

i=1

obs∑ Yi  
n

i=1

 , and (2)

RSR = 

obs sim∑(Yi  -Yi    )
2

n

i=1

obs mean∑(Yi  -Y        )
2

n

i=1

 , (3)

where Yi
obs and Yi

sim are the ith observed and 
simulated values, respectively; Ymean is the 
average of all observed values; and n is the 
number of observed values.

The modeling performance of the man-
ually calibrated SEIMS model for flow 
discharge and sediment export, both in 
the calibration and validation periods, 
are shown in figures 5 and 6, respectively. 
The calibration of flow has an NSE, RSR, 
PBIAS, and R2 of 0.48, 0.72, –16.24%, and 
0.58, respectively (figure 5a). According to 
the general performance ratings for simu-
lations at a monthly time step by Moriasi 
et al. (2007), the model performance is sat-
isfactory when the model results receive 
a value of NSE, RSR, and PBIAS better 
than 0.50, 0.70, and ±25% (for sediment 
it is ±55%), respectively. Thus, the perfor-
mance of flow is approximately satisfactory. 
For sediment, the NSE, RSR, PBIAS, 
and R2 are 0.30, 0.85, –58.19%, and 0.37, 
respectively (figure 6a). Although the over-
all simulated trend is consistent with the 
observed values according to R2, the sim-
ulation results still overestimated the low 
values and underestimated the peak sed-
iment exports (figure 6a). This is similar 
to other cases in which model simulations 
are generally poorer for shorter time steps 
than for longer time steps (Engel et al. 
2007). The performance of sediment can 
be regarded as acceptable.

Although the performance statistics for 
the validation period are poor for flow 
and sediment (figure 5b and figure 6b), the 
general trends of hydrographs in the study 
area can still be captured by the calibrated 
SEIMS model from a visual perspective. This 
means the calibrated model can be used for 
the following spatial optimization of BMPs. 
Therefore, the year 2013 was used as sim-
ulation period, and the scenario for model 
calibration was selected as the baseline sce-
nario. The BMP scenarios generated during 
the spatial optimization will be evaluated for 
2013 by the calibrated SEIMS model.
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Figure 5
(a) Calibration and (b) validation of the simulated flow discharge (Q) at the watershed outlet of the study area.
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Best Management Practices Knowledge 
Base. Four BMPs that have been imple-
mented in Changting County for soil 
and water conservation are considered in 
this study: closing measures (CM), arbor-
bush-herb mixed plantation (ABHMP), 
low-quality forest improvement (LQFI), 
and orchard improvement (OI). Their brief 
descriptions are listed in table 1 (Chen et al. 
2013, 2017).

The BMP knowledge base for this study 
mainly includes three components: the 
cost-benefit, the environmental effects, and 
the spatial relationships between BMPs and 
slope positions. The first two components 
are normal components in BMP knowledge 
bases for existing approaches to spatial BMP 
optimization, while the third is specific to 
the proposed approach.

The cost-benefit for each BMP consists 
of initial implementation cost, annual main-
tenance cost, and annual benefit estimated 
from local government project (table 2; 
Wang 2008).

For evaluating the environmental effects of 
BMPs on mitigating soil erosion, the relative 
improvements of major parameters related to 
hydrologic and soil erosion processes were 
collected and are listed in table 3. Relative 
changes to the conservation practice factors 
in the USLE model (i.e., USLE_P) in table 
3 were adopted from the calibrated SWAT 
model in Chen et al. (2013). Other factors 
were calculated directly (e.g., organic matter, 
bulk density, and total porosity) or indirectly 
(e.g., soil hydraulic conductivity and soil 
erodibility factor of USLE model) from the 
sample-plot data provided by Fujian Soil and 

Water Conservation Monitoring Station et 
al. (2010). These sample-plot locations were 
collected from locations where their respec-
tive BMPs have been implemented for eight 
years, and they were compared with con-
trol groups retaining their original land uses 
without the implementation of BMPs.

As stated above, the knowledge of the 
spatial relationships between the four BMPs 
and slope positions were formalized as two 
types of rules for the study area. Rules of 
the first type, i.e., the suitable BMPs for 
each type of slope position, are generalized 
from the description in table 1 and formal-
ized in table 4. Rules of the second type, 
i.e., the spatial constraint among BMPs on 
different types of slope position along the 
hillslope from upstream to downstream, are 
based on an effectiveness grade, which rep-
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Figure 6
(a) Calibration and (b) validation of the simulated sediment export (SED) at the watershed outlet of the study area.
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Table 1
A brief description of four best management practices (BMPs) that have been adopted in Changting County and considered in this study.

BMP Brief description

Closing measures (CM) Facilitate afforestation from human disturbance (e.g., tree felling and grazing). Suitable for the ridge
 area and upslope positions that suffer from low or moderate soil erosion.

Arbor-bush-herb mixed plantation (ABHMP) Planting trees (e.g., Schima superba and Liquidambar formosana), bushes (e.g., Lespedeza 
 bicolor), and herbs (e.g., Paspalum wettsteinii) in level trenches with compound fertilizer in 
 positions with high-to-violent soil and water losses. Suitable for all slope positions.

Low-quality forest improvement (LQFI) Improving the infertile forest by applying compound fertilizer to every hole (40 × 40 × 40 cm) in the 
 uphill position of crown projection. Suitable for the moderate or serious eroded land in the upslope 
 and steep backslope positions.

Orchard improvement (OI) Constructing level terraces, drainage ditches, storage ditches, irrigation facilities, and roads; 
 planting economic fruit; and interplanting grasses and Fabaceae (Leguminosae) plants in orchards 
 on the middle and downslope positions under better water and fertilizer conditions.

Mar. 1, 2013
June 1, 2013

Sept. 1, 2013
Dec. 1, 2013

Mar. 1, 2014
June 1, 2014

Sept. 1, 2014
Dec. 1, 2014

Jan. 1, 2015

Feb. 1, 2015

Mar. 1
, 2015

Apr. 1
, 2015

May 1
, 2015

June 1, 2015

July 1
, 2015

Aug. 1, 2015

Sept. 1
, 2015

Oct. 1
, 2015

Nov. 1
, 2015

Dec. 1, 2015

C
opyright ©

 2018 Soil and W
ater C

onservation Society. A
ll rights reserved.

 
w

w
w

.sw
cs.org

 73(5):504-517 
Journal of Soil and W

ater C
onservation

http://www.swcs.org


511SEPT/OCT 2018—VOL. 73, NO. 5JOURNAL OF SOIL AND WATER CONSERVATION

Table 2
Cost-benefits of four best management practices (BMPs) estimated from local government 
project (Wang 2008).

	 Implementation	cost	 Annual	maintenance	cost	 Annual	benefit
BMP (CN¥10,000 km–2) (CN¥10,000 km–2) (CN¥10,000 km–2)

CM 15.5 1.5 2.0
ABHMP 87.5 1.5 6.9
LQFI 45.5 1.5 3.9
OI 420.0 20.0 60.3
Notes: CM = closing measures. ABHMP = arbor-bush-herb mixed plantation. LQFI = low-quality 
forest improvement. OI = orchard improvement.

Table 3
Effects of four best management practices (BMPs) on major soil properties and universal soil 
loss equation (USLE) factors after eight years of implementation, according to the sample data 
in Changting County.

BMP OM* BD PORO† SOL_K USLE_K USLE_P

CM 1.22 0.98 1.02 0.81 1.01 0.90
ABHMP 1.45 0.93 1.07 1.81 0.82 0.50
LQFI 1.05 0.87 1.13 1.71 0.81 0.50
OI 2.05 0.96 1.03 1.63 0.88 0.75
Notes: Values in table are relative changes (i.e., multiply) corresponding to the original proper-
ties. CM = closing measures. ABHMP = arbor-bush-herb mixed plantation. LQFI = low-quality 
forest improvement. OI = orchard improvement. OM = organic matter. BD = bulk density. PORO 
= total porosity. SOL_K = soil hydraulic conductivity. USLE_K = soil erodibility factor. USLE_P = 
conservation practice factor.
*The effect on organic matter is the same as on soil organic carbon (C).
†The effect on total porosity is the same as on field capacity, wilting point, etc.

Table 4
The knowledge on the spatial relationships between best management practices (BMPs) and 
slope positions.

BMP Suitable slope positions Suitable land uses Effectiveness grade

CM Ridge, backslope Forest 3

ABHMP Ridge, backslope, and valley Forest, orchard 5

LQFI Backslope Forest 4

OI Valley Forest, orchard 4
Notes: CM = closing measures. ABHMP = arbor-bush-herb mixed plantation. LQFI = low-quality 
forest improvement. OI = orchard improvement.

resents the degree of improvement in the 
area of mitigating soil erosion (table 4). The 
effectiveness grades range from 1 to 5, with 
higher-numbered grades representing better 
effectiveness. In the current study, a simple 
rule is adopted according to local experi-
ence (Chen et al. 2013), i.e., the effectiveness 
grade of the BMP placed on the backslope of 
a hillslope should be greater than or equal to 
that of the BMP placed on the ridge of the 
same hillslope. For example, the effective-
ness order of BMP sequences for ridge and 
backslope of a hillslope should be ABHMP-
ABHMP, CM-ABHMP, and CM-CM, while 
the solution of ABHMP-CM will be ignored 
because the effectiveness grade of CM (i.e., 
3) is less than that of ABHMP (i.e., 5).

Multiobjective Optimization by 
Intelligent Optimization Algorithm. The 
Nondominated Sorted Genetic Algorithm 
(NSGA-II) (Deb et al. 2002) was selected 
as the intelligent optimization algorithm for 
the proposed approach. NSGA-II can ensure 
that the optimization solutions are diverse 
and well distributed in all objective func-
tions under consideration according to its 
nondominated sorting and elitism properties 
(Zitzler and Thiele 1999). NSGA-II has been 
widely applied to spatial BMP optimization 
with multiobjectives (e.g., maximum envi-
ronmental effectiveness and minimum net 
cost) (Rodriguez et al. 2011; Panagopoulos 
et al. 2012; Yang and Best 2015).

When the NSGA-II is applied to spatial 
BMP optimization, an individual of a pop-
ulation corresponds to a BMP scenario and 
is represented as a chromosome with genes 
as variables (i.e., BMP configuration units 
with selected BMP type or without BMP). 
The execution of NSGA-II includes an ini-
tialization process of initializing a population 
of individuals and then a circular process of 
evaluation and generation of BMP scenarios. 
For each round (or, equivalently, generation) 
of the process, the fitness of each individ-
ual in the current population is evaluated 
by objective functions (e.g., environmen-
tal effectiveness based on the calibrated 
watershed model, and economic benefit 
calculation by BMPs cost model). In the 
following selection process, the fittest indi-
viduals are selected (i.e., duplicated for next 
round), and those weak individuals are dis-
carded from the population. Those selected 
individuals are stored as an elite set, which is 
known as near Pareto optimal solutions (Deb 
et al. 2002) and will be updated by successive 

generations. The offspring are generated by 
crossover and mutation operators (or, equiv-
alently, regeneration), and then are added to 
the population for next round of evaluation. 
This process is repeated until a given maxi-
mum generation number has been reached.

When the NSGA-II is adopted by the 
proposed approach to spatial BMP optimiza-
tion, the spatial relationships between BMPs 
and slope positions along the hillslopes are 
incorporated into the initialization and 
regeneration (i.e., crossover and mutation) 
of BMP scenarios. In the initialization pro-

cess, the valley unit of each hillslope is first 
randomly allocated one suitable BMP or 
left without a BMP. Then, an iteration pro-
cedure is performed to select and allocate 
BMPs for other slope position units in an 
upstream-downstream order (i.e., backslope 
and ridge by sequence) based on the rules of 
spatial relationships between BMPs and slope 
positions along the hillslope. In the regener-
ation process, every BMP scenario generated 
after crossover and mutation operations is 
adjusted according to the rules of spatial rela-
tionships between BMPs and slope positions. 
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In such a way, every BMP scenario evaluated 
in the spatial BMP optimization is reasonable 
in terms of the spatial relationships between 
BMPs and slope positions, which means that 
the same will be true of every optimal BMP 
scenario. Unreasonable BMP scenarios will 
not be considered, which results in higher 
optimization efficiency.

The multiobjectives in this study are max-
imizing the reduction rate of soil erosion 
and minimizing the net cost of BMPs (equa-
tion 4). The calibrated SEIMS model for the 
Youwuzhen watershed is used to evaluate 
the reduction rate of soil erosion from each 
BMP scenario in comparison to a baseline 
scenario (equation 5). A simple BMP cost 
model (equation 6) is used to calculate the 
net cost of each BMP scenario according 
to the cost-benefit knowledge in the BMP 
knowledge base. The following three equa-
tions are used:

min{[ f (X )] ^ [–g (X )]}, (4)

where X represents a BMP scenario; f (X ) is 
the reduction rate of soil erosion under X 
compared to that under the baseline scenario 
(equation 5); and g (X ) is the net cost of X 
(equation 6);

f(X )= v(0)
v(0) - v(X )  ; and (5)

g(X )=∑ A(xi)×{[C(xi)+yr × (M(xi)–B(xi))]}
n

i=1
, (6)

where v(0) and v(X ) are the total amounts of 
soil erosion (kg) under baseline scenario and 
the X scenario, respectively; n is the number 
of BMP configuration units (slope position 
units); A(xi) is the area covered by the BMP 
implemented in the ith configuration unit; 
yr is the years since the BMP was imple-
mented, which is eight in this study (table 3); 
and C(xi), M(xi), and B(xi) are unit costs for 
initial implementation, annual maintenance, 
and annual benefit (table 2), respectively.

Experimental Design. The effectiveness of 
the proposed approach was compared with 
the traditional approach to spatial BMP opti-
mization (hereafter referred to as the random 
approach), which initializes and generates 
individuals by selecting and allocating BMPs 
on genes (corresponding to BMP configu-
ration units, i.e., slope position units in this 
study) randomly.

The proposed approach and the random 
approach were implemented based on a 

Python framework for evolutionary compu-
tation known as DEAP (Fortin et al. 2012). 
SCOOP (Hold-Geoffroy et al. 2014) was 
incorporated to improve computation effi-
ciency by distributing tasks dynamically 
across Linux cluster. Thus, the experiment 
was conducted on a Linux cluster, which 
consists of one management node and four 
computation nodes. Each node has two Intel 
Xeon E5645 central processing units (CPUs) 
and each CPU has six cores.

In the evaluation experiment, the main 
parameter settings of NSGA-II are the same 
for both approaches. The initial population 
size is 60 with a selection rate of 0.8 and a 
maximum generation number of 100. The 
crossover probability and the mutation prob-
ability are 0.75 and 0.15, respectively.

The proposed approach was evaluated 
with respect to two aspects—the quality of 
near Pareto optimal solutions and the com-
putational efficiency. The quality of near 
Pareto optimal solutions was evaluated via 
three methods. The first is visual interpre-
tation of the convergence and diversity of 
near Pareto optimal solutions derived from 
all generations. The second is based on the 
hypervolume index (Zitzler and Thiele 
1999), which measures the volume (area for 
two-dimensions) of objective space covered 
by a set of near Pareto optimal solutions. A 
higher hypervolume index indicates a better 
quality of solutions. The change of the hyper-
volume index with generations can provide 
a quantitative comparison of the quality of 
near Pareto optimal solutions considering 
both convergence and diversity (Zitzler et al. 
2003). In this study, the reference point for 
calculating the hypervolume index is (300, 
–1), which represents the economic benefit 
being CN¥300 million (1 Yuan = US$0.16) 
and the reduction rate of soil erosion being 
–1. Note that both the hypervolume index 
and near Pareto optimal front represent eval-
uations from a mathematical perspective and 
have less practical meaning than the spa-
tial configuration of BMP scenarios when 
it comes to decision making for watershed 
management. Therefore, the third method is 
to discuss the rationality of the spatial config-
urations of examples selected from the near 
Pareto optimal solutions.

Results and Discussion
Near Pareto Optimal Solutions Derived 
from All Generations. Figure 7 shows the 
near Pareto optimal solutions derived from 

all generations by the proposed approach 
and the random approach. From the visual 
interpretation, the proposed approach shows 
a better convergence and a similar diversity 
in the Pareto optimal front, compared to 
the random approach (figure 7). During the 
spatial optimization, the calibrated SEIMS 
model for the Youwuzhen watershed was 
executed to evaluate 1,476 BMP scenarios 
for the proposed approach and 1,523 BMP 
scenarios for the random approach, while 
the total runtimes were 8.7 and 11.8 hours, 
respectively. This means that with the con-
straint of the relationships between BMPs 
and slope positions, the proposed approach 
can reduce the search space of optimal solu-
tions, and hence improve the computational 
efficiency (Maier et al. 2014).

The Change of Hypervolume Index with 
Generations. The change of the hypervol-
ume index with generations (figure 8) shows 
that the proposed approach has an obvious 
advantage over the random approach when 
the generation number is less than 35, espe-
cially in the first 10 generations (figures 9a 
and  9b). With the increase of generation 
number, the hypervolume index values from 
the two approaches were similar until the 
random approach produced steadily higher 
values of the hypervolume index after the 
65th generation.

This effect might be a result of the fact 
that the search space for the proposed 
approach is constrained by the BMP knowl-
edge base, and thus is a subset of the search 
space for the random approach. Therefore, 
the proposed approach can lead individu-
als (i.e., BMP scenarios) to the ideal Pareto 
optimal front more rapidly than the random 
approach at the early phase of optimization 
(figures 9a and 9b). This result also suggested 
that it can be effective to utilize the rules of 
spatial relationships between BMPs and slope 
positions as a priori knowledge to achieve 
better solutions during optimization (Bi et 
al. 2015; Wu et al. 2018). In the late phase of 
the optimization, the random approach can 
generate scenarios beyond the search space 
of the proposed approach and could reach 
a higher hypervolume index value (figures 
8 and 9d). This phenomenon is common in 
similar comparison studies, such as Pyo et al. 
(2017). Although this means a better set of 
near Pareto optimal solutions from the math-
ematical perspective, the scenarios in this set 
might not be practical in terms of their spa-
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Figure 7
Near Pareto optimal solutions derived from the first to 100th generation by (a) the proposed  
approach and (b) the random approach.
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tial configurations of BMPs, as discussed in 
the following section.

Spatial Configuration of Selected Best 
Management Practice Scenarios. BMP sce-
narios from each approach with similar 
economic effectiveness (i.e., CN¥0.5 million 
net cost) were randomly selected from the 
near Pareto optimal solutions of the 10th 
generation (figure 9b) and mapped as figure 
10. The BMP scenario from the proposed 
approach could achieve a 32.4% reduction 

rate of soil erosion while that from the ran-
dom approach could achieve 21.2%. In the 
BMP scenario shown in figure 10a, the 
BMPs allocated by the proposed approach 
are mainly CM and ABHMP, and are distrib-
uted mainly on ridges and backslopes. This 
matches the relationships between BMPs 
and slope positions. However, in the BMP 
scenario from the random approach (figure 
10b), there are several inappropriate allo-
cations violating the relationships between 

BMPs and slope positions, e.g., allocating OI 
on ridges and CM on valleys. These inappro-
priate allocations make this BMP scenario 
unreasonable for practical engineering. Thus, 
in the 10th generation at the early phase of 
optimization, the proposed approach can 
derive more practicable and effective optimal 
BMP scenarios than the random approach.

Another two BMP scenarios from the 
proposed approach and the random approach 
with similar environmental effectiveness (i.e., 
48% reduction rate of soil erosion) were ran-
domly selected from the near Pareto optimal 
solutions of the 100th generation (figure 
9d) and mapped in figure 11. The net cost 
of the scenario from the proposed approach 
(i.e., CN¥1.22 million; figure 11a) would be 
higher than the cost of the scenario from the 
random approach (i.e., CN¥1.15 million; 
figure 11b). From the mathematical view, 
the random method generates a more opti-
mal solution than the proposed approach. 
However, the spatial BMP configuration 
of the scenario from the random approach 
still shows several inappropriate allocations 
that violate the relationships between BMPs 
and slope positions, which means that it is 
impractical for watershed management.

Summary and Conclusions
This paper proposes a spatial optimization 
approach to watershed BMPs based on slope 
position units. In the proposed approach, 
slope position units, as homogeneous spatial 
units with physical geographic features, are 
used as BMP configuration units by which 
the spatial relationships between BMPs and 
slope positions can be explicitly considered 
in spatial BMP optimization.

The proposed approach was combined 
with a spatially distributed and physically 
based watershed model (i.e., SEIMS) and 
a genetic algorithm (i.e., NSGA-II) as 
applied to a small watershed for spatial BMP 
optimization with the multiobjectives of 
maximizing the reduction ratio of soil ero-
sion and minimizing the net cost of the BMP 
scenario. Experimental results show that the 
proposed approach is effective and efficient 
at proposing practicable BMP scenarios for 
integrated watershed management, when 
compared to the random approach.

The proposed spatial optimization approach 
to watershed BMPs based on slope position 
units can be easily combined with other 
watershed models (e.g., SWAT+ [Bieger et 
al. 2016]), intelligent optimization algorithms 
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Figure 8
Changes in the hypervolume index with generations by the proposed approach and the random 
approach, respectively.
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(e.g., SPEA2 [Zitzler et al. 2001]), slope posi-
tions systems (e.g., five slope positions used in 
Qin et al. [2009] and Zhu et al. [2018]), and 
other BMPs available for different study areas.

This study also raises the following study 
issues for future work: (1) comparison with 
the adoption of other spatial BMP con-
figuration units; and (2) improvement of 
the intelligent optimization algorithm to 
accelerate the evolution of Pareto optimal 
solutions, especially for large watersheds with 
high numbers of slope position units and 
many BMPs under consideration.
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Figure 9
Comparison of near Pareto optimal solutions by the proposed approach and the random approach under different generations: (a) the first genera-
tion, (b) the 10th generation, (c) the 35th generation, and (d) the 100th generation.
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Figure 10
Comparison of the best management practice (BMP) scenarios selected randomly from the near 
Pareto optimal solutions of the 10th generation from (a) the proposed approach (32.4% reduction 
rate of soil erosion and CN¥0.51 million net cost) and (b) the random approach (21.2% reduction 
rate of soil erosion and CN¥0.53 million net cost). CM is closing measures, ABHMP is arbor-bush-
herb mixed plantation, LQFI is low-quality forest improvement, and OI is orchard improvement.
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Figure 11
Comparison of the best management practice (BMP) scenarios selected randomly by the near Pa-
reto optimal solutions of the 100th generation from (a) the proposed approach (47.7% reduction 
rate of soil erosion and CN¥1.22 million net cost) and (b) the random approach (47.9% reduction 
rate of soil erosion and CN¥1.15 million net cost). CM is closing measures, ABHMP is arbor-bush-
herb mixed plantation, LQFI is low-quality forest improvement, and OI is orchard improvement.
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