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T he anthropogenically induced 
increase of 146% in atmospheric 
concentration of carbon dioxide 

(CO2), from 278 ppm in the preindustrial 
era (circa 1750) to 405.5 ppm in 2017, is 
presently increasing at the rate of 2.24 ppm 
y–1 (0.55%) (WMO 2018). This increase, 
along with those of methane (CH4; from 
722 ppb to 1,859 ppb by 257% and increas-
ing at the rate of 0.38% or 6.9 ppb y–1) and 
nitrous oxide (N2O; from 270 ppb to 330 
ppb at the rate of 0.27% or 0.93 ppb y–1) 
has already caused ~1°C (1.8°F) increase 
in global temperature since the Industrial 
Revolution (IPCC 2018) with dire con-
sequences as exemplified by the increase 
in frequency of extreme events through-
out the world. However, there is still a 
chance to implement the Paris Climate 
Agreement proposed at the Paris Cli-
mate Conference (COP21) in 2015 and 
limit the global warming to 1.5°C (2.7°F). 
To achieve this limit, however, the world 
must identify noncarbon (C) fuel sources 
and simultaneously adopt techniques of 
removing CO2 from the atmosphere or 
implement negative emission technologies 
(NET). Carbon sequestration in soil is an 
important NET option with numerous 
cobenefits of enhancing agricultural pro-
duction, improving water resources, and 
strengthening biodiversity (Lal 2010).

Carbon sequestration in the terrestrial 
biosphere, with a technical cumulative C 
sink capacity of 155 Pg C (158.6 × 109 tn 
C) in vegetation and 178 Pg C (182.1 × 
109 tn C) in soil by 2100 (Lal et al. 2018), 
is equivalent to drawdown of atmospheric 
CO2 by 156 ppm. Of the total drawdown 
potential, drawdown through sequestra-
tion of soil organic C (SOC) is ~84 ppm of 
CO2. However, the large C sink capacity of 
the terrestrial biosphere must be accompa-
nied by a complete moratorium on fossil 
fuel combustion by 2050, another 32 years 
from now. To limit the global warming to 
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1.5°C (2.7°F), the atmospheric concentra-
tion of CO2 at 405.5 ppm in 2017 must 
not exceed 560 ppm by 2050. Whereas 
the cumulative emissions from fossil fuel 
combustion between 1960 and 2017 is 
estimated at 350 Pg C (358.1 × 109 tn C), 
additional emissions until 2050 must not 
exceed 328 Pg C (335.6 × 109 tn C) as 
described below and shown in figure 1: 

(560 ppm CO2 – 405.5 ppm CO2)  
÷ (Pg C/0.47 ppm CO2) = 328 Pg C.    (1)

The present rate of fossil fuel combus-
tion of 9.9 Pg C (10.1 × 109 tn C) in 2017 
(Le Quéré et al. 2018) must decline to 0 
by 2050 with the maximum cumulative 
C emission of 328 Pg (figure 1). Thus, the 
objective of this article is to describe the 
processes and practices of soil C seques-
tration to limiting the global warming to 
1.5°C (2.7 ºF). 

SOIL CARBON POOL
The soil C pool consists of two related but 
different components: the SOC pool and 
the soil inorganic C (SIC) pool, which 
strongly impact the global C cycle (GCC). 
The SOC pool, derived from the decom-
position of the remains of plants and 
animals and the by-products of micro-
bial processes, is estimated at 1,505 Pg 
(1,539.8 × 109 tn) to 1 m (3.28 ft) depth 
(Batjes 1996). In addition, Cryosols (fro-
zen soils or the permafrost) may contain 
as much as 1,672 Pg C (1,710.6 × 109 tn 
C) (Jungkunst et al. 2012). The SIC pool 
consists of carbonates derived from the 
weathering of parent rocks (lithogenic 
or primary carbonates) and those formed 
from the dissolution of CO2 in soil air to 
form a weak carbonic acid and its reaction 
with the bases brought in from outside the 
system (pedogenic or secondary carbon-
ates). The magnitude of the SIC pool is 
estimated at 940 Pg C (961.7 × 109 tn C) 
to 1 m (3.28 ft) depth (Monger et al. 2015). 
The SIC pool also consists of bicarbonates 
in groundwater estimated at 1,404 Pg C 
(1,436.4 × 109 tn C); there is a strong flux 
of CO2 into the groundwater (Kessler and 

Harvey 2001). Altogether, the SIC pool is 
about 2,344 Pg C (2,398.1 × 109 tn C) to 
1 m (3.28 ft) depth (Monger et al. 2015). 
Recalibration of the nonflat earth for ter-
rain and topsoil may increase the estimates 
of soil C stock to 8,580 Pg C (8,778.2 × 
109 tn C) (Blakemore 2018). With such a 
large C pool, in comparison with that of 
the atmosphere (820 Pg [838.9 × 109 tn]) 
and the biotic pool (620 Pg [634.3 × 109 
tn]), a small emission from the soil C pool 
can easily overwhelm the atmospheric 
pool and aggravate the process of global 
warming. On the contrary, even a small 
increase in the soil C pool through storage 
of biomass C can have a strong drawdown 
impact on atmospheric concentration of 
CO2. Thus, thoroughly understanding and 
judiciously managing the largest terres-
trial C pool (Scharlemann et al. 2014) is 
of a critical importance to limiting global 
warming to 1.5°C (2.7ºF) and also meet-
ing other demands of the growing and 
increasingly affluent world population. 

Historic land use and the widespread 
adoption of extractive farming prac-
tices, coupled with the severe problem 
of erosion and other degradative pro-
cesses, have depleted the SOC pool of 
agro-ecosystems by as much as 135 Pg C 
(138.2 × 109 tn C) (Lal 2018a). On the 
contrary, restoration of degraded soils 
through conversion to a restorative land 
use and adoption of recommended man-
agement practices can create a positive 
soil C budget. Through a widespread 
adoption of NET, therefore, world soils 
are a viable option for adaptation and 
mitigation of anthropogenic climate 
change. The schematic in figure 2 shows 
that 80 Pg C (81.8 × 109 tn C) was 
emitted between 1960 and 2017 from 
land use change (Le Quéré et al. 2018). 
However, adoption of the restorative 
land use and recommended manage-
ment practices can potentially create a 
drawdown of about 333 Pg C (340.7 
× 109 tn C) between 2020 and 2100 or 
reduction in atmospheric CO2 by ~156 
ppm through sequestration of C in the 
terrestrial biosphere (Lal et al. 2018). 
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Figure 1
The past emission and the designed reduction in the future emission. Past emissions are drawn from Le Quéré et al. (2018). 

CONCEPTUAL BASIS OF MANAGING  
THE SOIL CARBON POOL

The NET of C sequestration in the ter-
restrial biosphere is a natural process. 
All life on the planet Earth depends on 
the process of biosequestration of atmo-
spheric CO2. Only 0.05% of the 3,800 ZJ 
(1021 J; 3.6 × 1021 BTU) of solar energy 
is photosynthesized into 123 Pg C y–1 

(1,258 × 109 tn C yr–1) as gross primary 
productivity. Of this, 60 Pg C (61.4 × 109 
tn C) is respired back and the net pri-
mary productivity is 63 Pg C y–1 (64.5 
× 109 tn C yr–1). With losses by erosion, 
fire, etc., the net ecosystem productivity 
is merely 3 Pg C y–1 (3.07 × 109 tn C 
yr–1) (Jansson et al. 2010). Anthropogenic 
emissions of 11.3 Pg C (11.6 x 109 tn C) 
in 2017, comprising of 9.9 Pg C (10.13 
× 109 tn C) from fossil fuel combustion 
and 1.4 Pg (1.43 × 109 tn) from land use 
change (Le Quéré et al. 2018), can be 
entirely offset through a judicious man-
agement of the terrestrial biosphere to 
increase net ecosystem productivity to 
~10% of the annual GDP. Dyson (2008) 
rightfully stated that “if we control what 
plants do with carbon, the fate of CO2 in 
the atmosphere is in our hands.”

The book The Grapes of Wrath depicted 
the ramifications of the Dust Bowl of the 
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Figure 2
Carbon sequestration in the terrestrial biosphere (data of emission through land use 
change from Le Quéré et al. [2018], and that of sequestration from Lal et al. [2018]). 
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1930s (Steinbeck 1939), and subsequent 
books on the adverse impacts of plowing 
(Faulkner 1942) and those of pesticides 
(Carson 1962) provided the conceptual 
basis of both the urgency and necessity 
of sustainable management of soil and 
other natural resources. These concepts 
were strongly supported by the warnings 
regarding degradation of soil resources 
by accelerated erosion and other pro-
cesses (Whyte and Jacks 1944; Wood 
1950; Lowdermilk 1953; Buck 1931; 
Commoner 1971). The risks of drastic 
anthropogenic disturbance of the GCC 
have been highlighted by Roger Revelle 
since the 1950s (Revelle and Suess 1957; 
Revelle et al. 1965; Revelle and Munk 
1977; Revelle 1982). Revelle and Suess 
(1957) observed that increase in atmo-
spheric concentration of CO2 may cause 
global warming through the Greenhouse 
Effect, and that the CO2 concentration 
should be monitored. The latter led to the 
start of the Keeling Curve (Keeling et al. 
1989). Historic evolution of the scientific 
movement regarding the close interaction 
between the terrestrial biosphere and the 
GCC, and the importance of sustainable 
management of soil resources and resto-
ration of the environment is outlined in 
figure 3. 

MANAGING SOIL ORGANIC  
CARBON SEQUESTRATION

Since the onset of the movement on 
SOC sequestration early 1990s (figure 
3), considerable progress has been made 
in scientific developments (Blankinship 
et al. 2018). The concept of SOC persis-
tence as an ecosystem property (Schmidt 
et al. 2011)—based on a balance between 
decomposition by microbes on the one 
hand and protection by physical and 
chemical processes on the other—has 
been refined (Lehmann and Kleber 2015) 
in conjunction with the impact of climate 
(temperature and moisture regimes) on 
SOC turnover (Lawrence et al. 2015). The 
importance of physical access to decompo-
sitional processes rather than of molecular 
structure (Dungait et al. 2012; Heckman 
et al. 2018) along with identification 
of other protection mechanisms (Six et 
al. 2002) and the C saturation concept 
(Castellano et al. 2015) have improved the 
understanding of the factors governing the 
mean residence time (MRT) of SOC in 
soil (Schwendenmann and Pendall 2008). 
Progress is also being made in measure-
ments and monitoring (Wielopolski et al. 
2011), and in understanding the relative 
importance of sequestration in surface vs. 
subsoil (Matteodo et al. 2018; Hobley et al. 

2016; Moni et al. 2010; Wordell-Dietrich 
et al. 2017), rhizospheric processes (Vidal 
et al. 2018), microaggregates and SOC 
turnover (Totsche et al. 2018; Pavithra et al. 
2018), nutrient supply (Liang et al. 2019), 
impact of land use change (Chenu et al. 
2018), and of SOC fractions (Poeplau et al. 
2018). Despite the progress in science (Lal 
2018a) and technologies (Batjes 2018), the 
scientific knowledge to enhance SOC and 
SIC pools has not been effectively trans-
lated into an action plan at local, regional, 
national, or global scales. 

MANAGING SOIL INORGANIC CARBON 
Sequestration of SIC, as secondary 
carbonates and through leaching of bicar-
bonates, is also an important but much less 
researched theme (Lal 2009; Zamanian et 
al. 2016). Yet, SIC is a significant com-
ponent of the GCC and is a major C 
constituent in soils of dry climates, which 
cover about 41% of Earth’s land surface 
(Gao et al. 2017). Furthermore, the MRT 
of carbonates may be as long as 85,000 
years compared with 35 years for SOC, 
10 years for vegetation, and 5 years for 
the atmosphere (Schlesinger 1985, 2002; 
Monger et al. 2015). Restoration of 
degraded and desertified lands in dry areas 
lead to sequestration of SIC as pedogenic 

Figure 3
Historical evolution of movements regarding awareness about environmental issues and the importance of soil management.

Soil carbon sequestration movement

Year

1940	 1950	 1960	 1970	 1980	 1990	 2000	 2010

UN Summit Agenda 21 (Rio Summit)

Keeling Curve (1959)	 Global warming movement	 Kyoto Treaty (1997) 	 Paris Accord (2015)

Plowman's Folly (1942)	 No-till farming, conservation agriculture

Green Revolution, food security

Carson (1962)	 Environmental movement

Dust Bowl (1930s)	 Soil conservation movement
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posed at COP22 in 2016 in Marrakesh 
(Lal 2018b). These initiatives are examples 
of attempts to translate knowledge of soil 
science into policy. Implementation of 
these and other initiatives at local, national, 
and regional levels would be a step in the 
right direction. 

THE POWER OF SOIL CARBON 
SEQUESTRATION AS  
EMISSION NEGATIVE 

The soil C pool, the largest reservoir of 
the terrestrial biosphere, has a vast poten-
tial to impact the GCC and limit global 
warming. Despite the suggestions by some 
to be cautious about the potential of soil 
to mitigate global warming (Amundson 
and Biardeau 2018; Schlesinger and 
Amundson 2018; Cheng et al. 2012), the 
strong impact on the GCC and numerous 
cobenefits of SOC sequestration neces-
sitate an urgent action to translate the 
scientific knowledge into action. The lat-
ter would encompass adoption of proven 
management technologies of soil (i.e., 
conservation agriculture, biochar, agro-
forestry, integrating crops with trees and 
livestock, and recycling biomass), water 
C harvesting and recycling (through drip 
subirrigation and other microirrigation 
systems), livestock (controlled grazing and 
manure management) and plants (deep 
root systems and recalcitrant compounds) 
at local, regional, national, and global scales. 
A widespread adoption of proven technol-
ogies would also involve incentivization 
of farmers and land managers through 
payments for provisioning of ecosystem 
services strengthened by SOC sequestra-
tion on the basis of the societal value of 
soil C (Lal 2014). Soil scientists, in close 
cooperation with agronomists, foresters, 
geologists, and extension specialists, must 
seize the moment by working with policy 
makers to manage soil as a NET. The soil-
centric approach, inspired by nature and 
driven by science, is also critical to advanc-
ing the Sustainable Development Goals of 
the United Nations or the Agenda 2030. 
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