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Abstract:  Soil erosion and nutrient loss from surface runoff and subsurface leaching are 
critical problems for cultivated land. Conservation initiatives show a persistent need for field-
scale cropland vulnerability assessments to inform farm management options and prioritize 
efforts at watershed or regional scales. The Soil Vulnerability Index (SVI) was developed by 
USDA’s Natural Resources Conservation Service (NRCS) to assess inherent vulnerability of 
cropland to surface runoff and leaching using readily available soil and topographic inputs: 
hydrologic soil group, slope, erodibility K-factor, coarse fragments, and organic carbon (C). 
The SVI has been evaluated in a few watersheds but requires further evaluation across a wider 
range of physiographic and climatic conditions. The objective of this study was to evaluate 
the ability of the SVI to correctly identify vulnerability class based on slope, digital elevation 
model (DEM) resolution, hydrologic soil group, and soil erodibility across 13 of USDA’s 
Conservation Effects Assessment Project (CEAP) watersheds. The SVI classification was con-
sistent with model output classification with a similarity rate of more than 70% when the 
SVI component corresponded to the primary route of loss for nutrients or sediment. Results 
showed that SVIs were consistent with local scientific expertise about the site vulnerability to 
runoff and leaching, and were particularly useful in areas with mixed slopes and hydrologic 
soil groups. In watersheds with uniform C or D hydrologic soil groups, the SVI was primar-
ily driven by slope. In these cases, it was important to use a digital elevation map with 10 
m resolution or higher to more finely distinguish vulnerability. In areas with uniform slopes 
and hydrologic soil group, and in areas with uniformly steep slopes, the SVI was not able to 
identify fields with greater or lower vulnerability than others. In these cases, vulnerability 
assessments required additional factors: depth of restrictive layer, clay content, slope length, 
and landscape position. While the SVI was able to categorize vulnerability correctly in mixed 
soil and slope conditions, findings from this project highlight the need for incorporating 
DEM-sourced slope and other factors like depth of restrictive layer, clay content, slope length, 
and landscape position into the SVI to ensure that the SVI is applicable to the broad range of 
geomorphic conditions found in the United States. 

Key words: conservation practices—erodibility—erosion—hydrologic soil group— 
leaching—runoff

Nutrient impairment from excessive non-
point source pollution (NPS) is a difficult 
challenge in modern agricultural prac-
tices due to the spatial diffusion of the 
sources of NPS pollution (Sharpley et 
al. 2011). Many studies have documented 
the effects of cropland conservation prac-
tices (e.g., conservation cover and grassed 
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waterway) at reducing field-scale NPS pol-
lution (Douglas-Mankin et al. 2013; Jokela 
et al. 2004; Nangia et al. 2010; Sharpley et 
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SWAT-modeled total and organic N loads 
from cropland in two adjacent subwater-
sheds with contrasting soil characteristics 
within the Choptank River watershed in 
the Chesapeake Bay watershed. The paper 
concluded that vulnerability classification 
based on model outputs matched the SVI 
runoff classification for variables that relied 
on topographic characteristics for transport 
(e.g., organic N) and the SVI leaching clas-
sification scheme for constituents that are 
transported based on soil water movement 
characteristics (e.g., nitrates [NO3]). Hence, 
the SVI has a strong potential to serve as an 
initial water quality vulnerability classifica-
tion index without requiring water quality 
data inputs. Yasarer et al. (2020) compared 
the SVI vulnerability classification against 
outputs from the Annualized Agricultural 
Non-Point Source (AnnAGNPS) model in 
two watersheds in Lower Mississippi. The 
study concluded that the SVI is effective for 
identifying areas that could potentially con-
tribute to NPS pollution. 

In spite of these regionally specific eval-
uations, the SVI requires further validation 
across a range of physiographic and climatic 
conditions. The objective of this study was 
to assess the ability of the SVI to correlate 
with local scientific knowledge on iden-
tifying vulnerability class based on slope, 
DEM resolution, hydrologic soil group, and 
soil erodibility across 13 CEAP watersheds. 
This study complements SVI evaluations 
described in companion articles in this issue 
of the Journal of Soil and Water Conservation.

Materials and Methods
Study Area. A brief overview of the 13 
sites (figure 1) can be found in table 1, and 
additional details are given by Thompson 
et al. (2020). For this study, the sites were 
grouped based on croplands in dominant 
slope: steep slopes (>6%), flat slopes (<2%), 
and mixed slopes. 

Steep Slopes. WE-38 (7 km2) was an 
intensively monitored and researched 
catchment within the Mahantango Creek 
watershed in central Pennsylvania and was 
characterized by steep slopes (>6%). Land 
use in WE-38 watershed included culti-
vated land (54.9%), woodlands (39.6%), 
pasture (3.2%), and developed area (2.3%). 
Cropping systems varied by operation, 
with most including corn (Zea mays L.) 
and soybeans (Glycine max [L.] Merr.) in 
rotation with other crops, including small 

al. 2006; USDA NRCS 2012, 2016). In spite 
of beneficial edge-of-field effects of conser-
vation practices, watershed-scale benefits of 
conservation programs remain elusive and, 
in some cases, even undetectable (Chaubey 
et al. 2010; Inamdar et al. 2002; Park et al. 
1994; Tomer et al. 2003, 2014; Tomer and 
Locke 2011). Multiple reasons contribute to 
this lack of observable benefit, including the 
legacy effect of past management practices 
(Sharpley et al. 2013) or the low adoption 
rate (Jackson-Smith et al. 2010; Ryan et al. 
2003). However, research has also shown that 
conservation practices have often not been 
implemented in the most vulnerable areas 
(Gale et al. 1993; Nowak and Cabot 2004; 
Nowak et al. 2006; Strauss et al. 2007; Tomer 
et al. 2003; Tomer and Locke 2011; Yang et al. 
2005). Where this has been done, data from 
appropriate monitoring designs have doc-
umented improvements at watershed level 
(Osmond et al. 2012). However, one prereq-
uisite for practices to be implemented where 
they are most needed is to identify these high 
vulnerability areas, which remains technically 
challenging (Tomer et al. 2013). Thus, there 
is a need for targeting tools to define these 
areas. Overlaying the presence or absence of 
conservation management practices can then 
help assess where new practices are needed.

Several indices and tools can help to iden-
tify these critical source areas. For example, 
remote sensing, geographic information sys-
tem (GIS), and the Revised Universal Soil 
Loss Equation (RUSLE) (Renard et al. 1991) 
are routinely used to map soil erosion risk 
(Meals et al. 2012). Watershed-scale com-
puter simulation models like the Agricultural 
Policy Environmental eXtender (APEX) 
model (Williams and Izaurralde 2005) and 
the Soil and Water Assessment Tool (SWAT) 
model (Arnold et al. 1998) are hydrologic 
models extensively used to understand the 
linkage between land use and management, 
and outputs like sediment, runoff, or yield 
(Busteed et al. 2009; Douglas-Mankin et al. 
2013; Lee et al. 2018; Gassman et al. 2007). 
However, these tools are complicated and 
require multiple data sets and modeling 
expertise, many of which are typically lack-
ing at the field, county, and state levels. 

A time and cost effective, less computa-
tionally intensive approach is to use indices 
that rely on readily available input parame-
ters. For example, the Phosphorus Index (PI) 
can rank fields based on their vulnerability 
to phosphorus (P) losses (Lemunyon and 

Gilbert 1993). The Conductivity Claypan 
Index (CCI), developed by Mudgal et al. 
(2012), classifies fields or subfield areas based 
on the vulnerability to surface runoff. The 
Water Quality Index (WQI) combines mea-
sured values of multiple water quality factors 
such as dissolved oxygen (O), pH, biological 
O demand, C-O demand, E. coli, tempera-
ture, and nutrients (nitrogen [N] and P) into a 
single value used for evaluating the quality of 
water in rivers, streams, and lakes (Lal 2011). 
The Water Quality Index for Agricultural 
Runoff (WQIag) is also a web-based index 
that uses multiple field characteristics and 
management factors to evaluate effective-
ness of conservation practices for improving 
water quality of runoff water from agricul-
tural lands (Lal and McKinney 2012). An 
equally simple index that does not require 
water quality measurements is the Soil 
Vulnerability Index (SVI). 

The SVI was developed by USDA Natural 
Resources Conservation Service (USDA 
NRCS) as a product of the Conservation 
Effects Assessment Project (CEAP) to quan-
tify cropland vulnerability to runoff and 
leaching. The SVI was originally developed 
for large-scale, regional analysis support 
(USDA NRCS 2012). The SVI uses publicly 
available data from the SSURGO database 
(Soil Survey Staff 2015) to categorize land 
into four vulnerability classes—low, mod-
erate, moderately high, and high. The SVI 
runoff component defines the potential risk 
of sediment and sediment-bound contami-
nants’ loss via surface runoff, whereas the SVI 
leaching component depicts the potential 
risk of nutrient loss through infiltration and 
subsurface flows (e.g., lateral seepage, return 
flow, and tile drainage). Details on the devel-
opment and purpose of the SVI are discussed 
by Thompson et al. (2020). 

An initial evaluation of the SVI was 
conducted by Chan et al. (2017) in the 
Goodwater Creek Experimental Watershed 
in Missouri. One finding was that, for water-
shed planning purposes and for individual 
field evaluation, the SVI produced more 
useful results by using slopes derived from 
a 10 m digital elevation model (DEM) than 
from the SSURGO representative slope 
(Chan et al. 2017). These results empha-
size the importance of using 10 m DEMs, 
currently available for the entire United 
States, in addition to SSURGO polygons 
and soil properties. Lee et al. (2018) com-
pared SVI sediment risk categories against 
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Table 1 
Study sites.

					     Cropland area 			   Proportion of watershed in each	
Sites			   Area (km2)	 in watershed (%)	 Dominant slope	 hydrologic soil group (A/B/C/D) (%)

WE-38, Pennsylvania		  7		  55		  Steep slopes (>6%)	 19/59/11/11
Delta Water Management	 Range of areas	 100		  Flat slopes (<2%) 	 8/4/14/74
Research Center, Arkansas	 (0.07 to 0.3)
Choptank, Maryland		  1,042 (headwater)	 49		  Flat slopes (<2%)	 18/24/16/42
Upper Snake Rock, Idaho	 1,136		  76		  Flat slopes (<2%)	 0/4/64/32
Goodwin Creek, Mississippi	 16		    6		  Flat slopes (<2%	 0/21/25/54
Beasley Lake, Mississippi	 6		  71		  Flat slopes (<2%)	 0/3/31/66
South Fork of Iowa River, Iowa	 785 		  84		  Flat slopes (<2%)	 1/28/14/57
Walnut Creek, Iowa		  50		  79		  Flat slopes (<2%)	 0/34/7/59
Upper Big Walnut Creek, Ohio	 491		  44		  Flat slopes (<2%)	 0/2/14/84
Cedar Creek, Indiana		  710		  63		  Mixed slopes	 5/6/8/81
Little River Experimental	 334		  55		  Mixed slopes	 7/57/12/24
Watershed, Georgia
Riesel, Texas		  3.3		  35		  Mixed slopes (uniform	 0/0/11/89
							       hydrologic soil group)
Mark Twain Lake, Missouri	 ~4,100		 38		  Mixed slopes (uniform	 0/1/7/92
							       hydrologic soil group)

Figure 1
Study areas.
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grains and, for dairy operations, alfalfa 
(Medicago sativa L.) (mixed alfalfa-grass) 
(Veith et al. 2015). Slopes in the cultivated 
portions of WE-38 ranged from 0% to 18%, 
with a few woodland hillslopes approach-
ing 32% (Bryant et al. 2011). Hydrologic 
soil groups A through D were present, but 
group B was dominant. Soils having shal-
low restrictive layers were common in the 
lower portions of the landscape.

Flat Slopes. The Delta Water Management 
Research Unit, hereafter referred to as Delta 
Water, in northeast Arkansas, included the 
Little River Ditches basin in Mississippi 
County and the Lower St. Francis basin in 
Poinsett County. Both areas were predom-
inantly agricultural; however, the cropping 
systems differed significantly as mostly rice 
(Oryza sativa L.) was grown in the Lower St. 
Francis and cotton (Gossypium hirsutum L.), 
corn, or soybean were grown in the Little 
River Ditches basin (Aryal and Reba 2017). 
The studied areas were part of an ongoing 
field-level study of the larger state-wide 
Mississippi River Basin Healthy Watersheds 
Initiative (MRBI) network (Reba et al. 
2013) and included six different sites: 
Caraway, Leachville, Manila, Burdette Zero 
Grade, Burdette Precision Level, and Marked 
Tree, ranging in size from 0.07 to 0.3 km2. 
All fields in this watershed were very flat, 
with slopes ranging from 0% to 1%. Each 
site was split into a control and a treatment 
field with monitoring equipment installed in 
each treatment to evaluate the effects of spe-
cific agricultural best management practices 
(BMPs) to reduce losses of nutrients (N and 
P) and sediment in the runoff water. 

The Choptank River watershed (head-
water 1,042 km2) in Maryland was impaired 
by excessive nutrient and sediment loads 
from agricultural land (McCarty et al. 2008). 
Land use in the watershed was dominated 
by agricultural land (65%), forests (26%), and 
developed areas (5%) (Fisher et al. 2006). 
Almost 70% of the watershed had slope less 
than 2%. This watershed had variation in 
the hydrologic soil group, the dominant one 
being hydrologic soil group D, followed by 
hydrologic soil group B. Even though Lee 
et al. (2018) evaluated suitability of the SVI 
in identifying inherent vulnerability to NO3 
and organic N transport in two subwater-
sheds of the Choptank basin, results were 
included here as part of the overall synthesis 
across all the studied watersheds. 

The Upper Snake Rock 8-digit hydro-
logic unit code (HUC) was 6,300 km2 with 
60% range and forest land, and 37% irrigated 
cropland. This project focused on the Twin 
Falls irrigation project (1,136 km2), which 
was 80% irrigated cropland, 10% developed 
(urban or subdivision), and the remainder 
was open water, roads, or fallow. The study 
area was dominated by flat slopes and hydro-
logic soil group C and D. Large canals were 
used to supply water from the Snake River 
to irrigate cropland and pastures. Irrigation-
induced soil erosion was a common 
environmental concern in the Upper Snake 
Rock watershed (Bjorneberg et al. 2008). 

The Goodwin Creek watershed was 21 
km2 in area and had mixed land use and 
management practices that influenced sedi-
ment loss to the streams (Alonso and Bingner 
2000). There was substantial gullying, and 
gullied land, mostly silty, were reported for 
nearly a quarter of the watershed. The hydro-
logic soil groups ranged from A to D, with 
edge-of-field gauges sampling mostly areas 
with hydrologic soil group C soils. A key 
characteristic of this watershed was the large 
sediment loads generated by stream channel 
erosion. Croplands include only 6% of the 
watershed, and almost 80% of the croplands 
are in flat slopes. 

The Beasley Lake watershed was a 6 km2 

oxbow lake watershed with no contribut-
ing streams in the Lower Mississippi River 
Basin. The cropping system has transitioned 
from predominantly conventionally tilled 
cotton to predominantly conservation till-
age soybean in 2002, and approximately 
14% of the watershed was subsequently con-
verted to Conservation Reserve Program 
(CRP, USDA Farm Service Agency) in 2003 
(Lizotte et al. 2017). The site was dominated 
by hydrologic soil group C and D soils in 
undrained conditions. Slope was flat (<2%) 
in most fields, and drainage ditches were 
used to transfer water from fields to the 
oxbow lake. 

The South Fork of Iowa River watershed 
(785 km2) and the Walnut Creek watershed 
(50 km2) were poorly drained flat water-
sheds in Upper Mississippi River Basin in 
Iowa. Corn and soybean were the domi-
nant crops in the South Fork of Iowa River 
watershed, grown annually in 85% of the 
watershed. Pasture covered 6% of the water-
shed. Highly erodible land covered 13% of 
the watershed area (Tomer and James 2004). 
The Walnut Creek watershed was predom-

inantly under row crop production with 
corn and soybean rotation accounting for 
80% of the land use (Hatfield et al. 1999). 
Soil wetness was a key concern for agri-
culture due to dominant D soils, so tile 
drainage was common in both watersheds. 

The Upper Big Walnut Creek watershed, 
approximately 491 km2, was located in cen-
tral Ohio. Almost 50% of the watershed had 
slope less than 2%. Cropland for production 
agriculture was the dominant land use (73%) 
in the watershed, followed by urban/farm-
stead (21%) and woodland (6%) (Williams 
et al. 2015). The primary crops grown were 
corn, soybean, and wheat (Triticum aestivum 
L.) managed with conservation tillage, fer-
tilizer, and pesticide applications (King et al. 
2008). There was an extensive network of 
subsurface tile drainage in this watershed. 
More than 75% of agricultural cropland in 
the watershed was tile drained.

Mixed Slopes. The Cedar Creek water-
shed (710 km2) was characterized by soils 
with slow permeability and small closed 
depressions or “potholes” that were scat-
tered throughout the landscape. The closed 
depressions and poorly drained fields were 
often too wet to farm and required the use 
of artificial drainage to remove excess water 
during the growing season. While the extent 
of subsurface tile drainage and the number 
of surface inlets in Cedar Creek watershed 
were unknown, it was estimated that the vast 
majority (>80%) of agricultural fields with 
poorly drained soils had artificial drainage. 
Almost 40% of the watershed had <2% slope, 
30% of the watershed had between 2% to 4% 
slope, and the remainder had >4% slope. 

The Little River Experimental Watershed 
(334 km2) had broad floodplains and mostly 
sandy soils. Most slopes were less than 5%, 
with some valley side slopes ranging from 
5% to 15% (Bosch et al. 2007). Land use in 
the watershed included agriculture (31%), 
pasture (10%), riparian forest (28%), upland 
forest (22%), and urban area (7%) (Sullivan 
et al. 2008). The primary crops grown were 
row crops (cotton, corn, and peanut [Arachis 
hypogea L.]), and vegetables, typically without 
artificial drainage. 

The Riesel USDA Agricultural Research 
Service (ARS) (3.3 km2) site in Texas, origi-
nally known as the Blackland Experimental 
Watershed, was dominated by poorly drained 
soils (hydrologic soil group D), and >70% of 
the watershed had slope <3%. It included 
multiple cultivated watersheds and pasture 
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watersheds. Major land use in the watershed 
included pasture and rangeland, and cropland 
producing corn, grain sorghum (Sorghum bio-
color L. Moench), and oat (Avena sativa L.) 
(Harmel et al. 2000). 

The Mark Twain Lake/Salt River basin 
watershed was located in northeast Missouri 
and included 10 subwatersheds (North Fork, 
Middle Fork, Elk Fork, Long Branch, South 
Fork, Lick Creek, Black Creek, Crooked 
Creek, Otter Creek, and Ely Creek) rang-
ing in size from 271 to 1,579 km2. The basin 
had predominantly poorly drained claypan 
soils (hydrologic soil group D), which had 
characteristically high soil runoff potential. 
Dominant land use type included cropland 
(44%), pasture (33%), and forest (18%) (Lerch 
et al. 2008). While the watershed had a range 
of slopes, the cropland was mostly located on 
land with <4% slope. The Mark Twain Lake 
watershed and Riesel ARS sites were domi-
nated by poorly drained D soils. 

SVI Calculation and Evaluation. 
Thompson et al. (2020) describe the goals 
of the SVI, as well as the assumptions made 
and the methods employed to develop vul-
nerability classes and characterize them in 
terms of SSURGO parameters (tables 2 and 
3). The runoff component of the SVI indi-
rectly addresses the vulnerability of cropland 
to soil degradation and transport of nutrients 
via surface runoff. The leaching compo-
nent of the SVI addresses the vulnerability 
of cropland to leaching. For this study, the 
SVI was calculated using ArcGIS software 
(version 10.3) using easily available input 
parameters from the SSURGO database and 
a DEM, and was applicable at scales ranging 
from a single field to a watershed. The SVI 
runoff component considers the hydrologic 
soil group, slope, and soil erodibility K-factor; 
while the SVI leaching component consid-
ers the same three properties plus the coarse 
fragment content of the soil and the pres-
ence of organic soils. A SSURGO soil layer 
was downloaded from the web soil survey 
(WSS) website (http://websoilsurvey.nrcs.
usda.gov/app/HomePage.htm), and DEMs 
were obtained from the US Geological 
Survey (USGS) website (https://viewer.
nationalmap.gov/launch/). Locally surveyed 
soil maps or properties or high resolution 
DEMs (10 m) were used when available. The 
soil layer was used to extract separate ras-
ter layers (10 m resolution) for organic soil, 
hydrologic soil group, and USLE soil erod-
ibility K-factor. Slope was computed from 

DEMs by calculating the rate of maximum 
change in elevation across the eight adjacent 
neighbors in a 3-by-3 window (Gesch et al. 
2002). The raster layers (organic soil, hydro-
logic soil, and soil erodibility K-factor) were 
then combined cell-by-cell with the DEM-
derived slope layer in the raster calculator to 
derive both runoff and leaching components 
of the SVI based on the criteria for the four 
vulnerability classes. The SVI was calculated 
for every cell of the highest resolution input 
raster to create maps and summary tables, 
which were then discussed with scientists, 
hydrologists, and engineers from each study 
watershed via conference calls (included as 
coauthors in this article).

For soils that had a dual hydrologic soil 
group classification, the hydrologic soil 
group for undrained conditions was used per 
the SVI definition. In the Little River water-
shed, several soils were ambiguously classified 
within SSURGO reports, and in Goodwin 
Creek watershed, large gullied areas had no 
designated hydrologic soil group. Local sci-
entists defined missing parameters for these 
soils and gullied areas. The leaching com-
ponent of the SVI determined whether a 
soil is organic or not based on description 
for the Histosols and Histic epipedons (typ-
ically in the A horizon) in the SSURGO/
gSSURGO soil taxonomy.

The original method for SVI calculation 
was to use the SSURGO soil map unit rep-
resentative slope. Chan et al. (2017) showed 
that this method resulted in an underestima-
tion of the erosion vulnerability estimated by 
the SVI in Goodwater Creek Experimental 
Watershed. Analysis of aerial imagery showed 
that some of the areas not identified as hav-
ing a high vulnerability when using the 
SSURGO slope were showing signs of 
severe soil degradation (presence of rills). In 
this study, DEM rather than SSURGO was 
used to determine slopes. 

In watersheds with artificial drainage (tile 
or ditch), the SVI calls for increasing the 
leaching vulnerability by two classes (mod-
erate and moderately high increased to high, 
and low increased to moderately high) (table 
3). However, for this analysis, the initial clas-
sification of the leaching component of the 
SVI before artificial drainage was analyzed in 
order to be consistent with the other water-
sheds. This paper was intended to evaluate 
the effects of inherent soil properties sep-
arately from artificial drainage. A separate 
article analyzes the suitability of the SVI 

specifically for artificially drained cropland 
(Baffaut et al. 2020). 

Scientists who participated in the SVI 
evaluations interpreted the results based on 
their knowledge of vulnerability and con-
servation needs in their respective watershed. 
Did the SVI vulnerability across the water-
shed correspond to the relative risks of 
pollutant transport by runoff and leaching 
in these fields? Was the SVI useful to assess 
conservation needs in the watersheds (i.e., 
was the SVI able to identify land that needed 
conservation practices before being used to 
grow crops)? Finally, was it helpful to decide 
where to focus conservation or planning 
efforts? Answers to the first two questions 
relied primarily on knowledge of the water-
shed. Answers to the last question relied on 
whether the distributions of vulnerability to 
runoff and leaching spanned the four classes 
or were skewed toward one or two classes. In 
the latter case, the index would be less useful 
to plan conservation.

Effect of Slope and Hydrologic Soil Group 
on SVI Distribution. Prior SVI validation 
results (Chan et al. 2017) showed a strong 
impact of slope on the SVI. Given that the 
definition of vulnerability to runoff gives an 
important role to slope, and to hydrologic 
soil group for the leaching component, it was 
important to consider to what extent slope 
and hydrologic soil group were the major 
drivers in these watersheds. The effects of 
slope on the runoff component of the SVI 
and of hydrologic soil group on the leaching 
component were considered across all the 
CEAP sites in this analysis. Linear regression 
analysis between the fractions of watershed 
in each SVI category and the fractions of 
watershed in each slope category for the 
runoff component, and in each hydrologic 
soil group for the leaching component, were 
conducted. In each case, the coefficient of 
determination (r2) and the regression slope 
were determined using Excel (Microsoft, 
Redmond, Washington) and its statistical 
package. Significance of the coefficient of 
determination and of the slope were assessed 
at the 0.05 probability. For analysis of vul-
nerability to runoff, the sites were grouped 
based on the three slope categories presented 
earlier (table 1)—steep slopes, flat slopes, and 
mixed slopes. The Mark Twain Lake water-
shed and Riesel ARS sites were separately 
analyzed because they also represented areas 
dominated by a single hydrologic soil group 
(i.e., poorly drained D soils). 
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Another alternative is to calculate a repre-
sentative slope for each soil map unit based 
on the fraction of that map unit within the 
study area. In essence, the slope is calcu-
lated as the average (mean, median, or 75th 
percentile) cell value of an unfilled (i.e., 
unconditioned) DEM. This SVI calculation 
method was incorporated in the Agricultural 
Conservation Planning Framework (ACPF) 
tool, a set of custom-developed agricultural 
conservation planning tools at watershed 
scale (HUC12 watersheds), developed to 
be used with ArcGIS software (Tomer et al. 
2013). These tools can be used to generate 
detailed maps that identify areas where dif-
ferent conservation practices can be located. 
The SVI results using ACPF-calculated slope 
were compared with SVI results using cell-
by-cell calculated slope for all 13 sites. Three 
means of calculating a representative slope 
for the map unit using ACPF were consid-
ered: 75th percentile slope, mean slope, and 
median slope.

The hydrologic soil group is primarily 
determined based on the rate of infiltration 
in soils of different textures (USDA NRCS 
2007), which decreases from hydrologic soil 
group A to D, and the presence of a restric-

tive layer or water table within the first 
50 cm of soils, which increases saturation 
excess runoff. The SVI leaching potential is 
derived from the infiltration rate and the 
natural drainage characteristics. For anal-
ysis of vulnerability to leaching, the sites 
were grouped based on the proportion of 
hydrologic group B soils in the croplands in 
the watershed. Sites with high proportion 
(>50%) of B soils were WE-38 and Little 
River; Goodwin Creek, Choptank, South 
Fork of Iowa River, and Walnut Creek had 
proportion of B soils between 20% to 50%; 
and sites with low proportion (<20%) of B 
soils were Riesel, Mark Twain Lake, Delta 
sites, Upper Snake Rock, Beasley, Upper 
Big Walnut Creek, and Cedar. The different 
fields of the Water Management Research 
Center in Arkansas and the subwatersheds 
in the Mark Twain Lake were considered 
subsets of each site. To not bias the analysis 
by the conditions at these two sites, an area-
weighted average of the fractions in each 
slope category, hydrologic soil group, and 
SVI category were calculated.

Effect of Digital Elevation Model 
Resolution on SVI Distribution. Multiple 
studies have shown the importance of 

DEM for land use planners (Hammer et al. 
1991), and the impact of DEM resolution 
on the outcomes from water quality models 
(Beeson et al. 2014). Since slope calculated 
from a DEM was used in this study instead of 
the SSURGO map unit representative slope, 
sensitivity to DEM resolution was conducted 
for all 13 watersheds. For each watershed and 
each SVI vulnerability category, differences 
between percentages of cropland area in each 
watershed obtained with each of three DEM 
resolutions (30 m, 10 m, and a fine resolution 
ranging from 1 m to 5 m) were calcu-
lated. Results were considered significantly 
affected by DEM resolution if the percentage 
of cropland area differed by 5% or more for 
at least one vulnerability category.

Comparison with Model Outputs. 
Independent analyses have compared the 
SVI to modeling results in the Goodwater 
Creek Experimental Watershed (Chan et 
al. 2017), which is a watershed within the 
Mark Twain Lake watershed; Tuckahoe 
Creek and Greensboro watersheds (Lee et 
al. 2018), which are within the Choptank 
River watershed; and Goodwin Creek and 
Beasley Lake watersheds (Yasarer et al. 2020). 
In each case, a calibrated model was used to 

Table 2
Criteria for four classes of soil runoff potential (USDA NRCS 2016).

Soil runoff	 Hydrologic soil group
potential		  A		  B				    C			   D

Low		  All area		  Slope* < 4			   Slope < 2			   Slope < 2; K-factor† < 0.28
Moderate	 	 None	 	 4 ≤ slope ≤ 6; K-factor < 0.32	 	 2 ≤ slope ≤ 6; K-factor < 0.28	 Slope < 2; K-factor ≥ 0.28
Moderately high	 None	 	 4 ≤ slope ≤ 6; K-factor ≥ 0.32	 	 2 ≤ slope ≤ 6; K-factor ≥ 0.28	 2 ≤ slope ≤ 4
High		  None		  Slope > 6	 			   Slope > 6			   Slope > 4
*Slope measured as percentage.
†K-factor refers to the soil erodibility factor (K) found in the Universal Soil Loss Equation. 

Table 3
Criteria for four classes of soil leaching potential (USDA NRCS 2016).

Soil leaching 	 Hydrologic soil group
potential*†	 A		  B				    C			   D

Low		  None		  None				    None			   All except organic soils
Moderate	 	 None	 	 Slope ≤ 12 and K-factor‡ ≥ 0.24 	 	 All except organic soils	 None
				    or slope > 12	
Moderately high	 Slope > 12	 	 3 ≤ slope ≤ 12 and K-factor < 0.24	 None	 	 	 None 
High	 	 Slope ≤ 12 or soils	 Slope < 3 and K-factor < 0.24	 	 Soils classified as organic	 Soils classified as 	
	 	 classified as organic	 or soils classified as organic	 	 	 	 	 organic
*If the coarse fragment content of the soil is greater than 30% by weight, the soil leaching potential is increased by two levels (moderate and mod-
erately high increased to high, and low increased to moderately high). If the coarse fragment content is greater than 10% but less than 30%, the soil 
leaching potential is increased one level.
†Artificial drainage of any type increases leaching potential by two classes (moderate and moderately high increases to high, and low increases to 
moderately high).
‡K-factor refers to the soil erodibility factor (K) found in the Universal Soil Loss Equation.  
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simulate sediment or nutrient transport by 
runoff or leaching. Since the SVI does not 
consider management, the model used a sin-
gle management system appropriate for each 
watershed on all cropland. Edge-of-field 
simulated sediment and nutrient transport 
by runoff and leaching were classified into 
four classes. Since the studies were indepen-
dent, they did not use the same thresholds 
to define vulnerability classes based on 
model outputs. Yasarer et al. (2020) consid-
ered sediment losses and used the thresholds 
established during the development of the 
SVI (Thompson et al. 2020). In contrast, 
Chan et al. (2017) and Lee et al. (2018) used 
the Jenks natural break method (Jenks 1967) 
to divide model outputs for spatial units into 
four classes (high, moderately high, moder-
ate, and low). This method minimizes the 
variance within each group and maximizes 
the variance between groups (Jenks 1967). 

Simultaneously, the SVI was assessed for 
the spatially defined cells or units defined 
by the model using the soil and topographic 
inputs of the model. The synthesis of these 
three studies considered two aspects. First, 
the median values of simulated soil loss and 
nutrient yields and the SVI vulnerability 
class should be consistent, meaning distinct 
and increasing median values for increasing 
vulnerability. Second, classification by either 
method should be similar. The similarity rate 
(i.e., the areal proportion of cropland clas-
sified in the same vulnerability class by the 
SVI and using model outputs) was deemed 
good if greater than 75%, the criterion used 
for a good match between model results and 
SVI classification during SVI development 
(Thompson et al. 2020). Additionally, the 
similarity was deemed acceptable if the simi-
larity rate was greater than 65%. In each case, 
the SVI component used for the comparison 
was the main pathway for the transport of 
each constituent: the runoff component for 
contaminants transported via surface runoff 
(i.e., sediment, total N, and organic N), and 
the leaching component for NO3, which are 
transported via leaching.

Results and Discussion
Figure 2 shows the SVI vulnerability to 
runoff in the study sites. The overall SVI 
calculation was easy to perform with a basic 
knowledge of ArcGIS software. The input 
data required for SVI assessment were all 
publicly available for these US sites. Based 
on the responses from the local scientists, the 

SVI was useful for conservation effort tar-
geting in some watersheds and not so useful 
in others. The relationship between the SVI 
and slope or soil hydrologic group helped 
clarify when the SVI was useful or not. Areas 
with mixed slopes and hydrologic soil groups 
showed a range of SVI vulnerability, thus pro-
viding potential to identify locations where 
efforts need to focus. In contrast, areas with 
uniform slope and hydrologic soil group 
showed uniform SVI vulnerability class such 
that the SVI was not able to distinguish fields 
that were more or less vulnerable than others. 
The following sections describe the impact 
of slope and hydrologic group distribution 
on the results and usefulness of the index. 

Effect of Slope on SVI Vulnerability to 
Runoff. Results of the regression between 
proportions of land in each slope category 
and in each SVI category are shown in 
table 4. In many cases, there was a signif-
icant relationship between slope category 
and SVI class. However, there were some 
exceptions. We provide more details in the 
following paragraphs. 

Slope was the dominant factor for the 
runoff component of the SVI in watersheds 
where steep slopes (>6%) were prevalent 
(WE-38; figure 2). When slope was steep, 
the corresponding vulnerability to run-
off was always high (table 2) regardless of 
hydrologic soil group and K-factor. Thus, 
the relationship between fractions of the 
watershed in each slope category and each 
class of the runoff component of the SVI 
was very strong, and the slope distribution 
explained 95% or more of the variability 
in vulnerability to runoff (table 4). Yet this 
was likely an artifact of the r2 coefficient of 
determination, which is biased toward high 
values. While this is correct given the high 
slopes, SVI indication of vulnerability was 
not particularly useful. Hillslopes with >6% 
slope may be consistently and rightfully 
considered the most vulnerable to runoff, 
but the SVI was not able to differentiate the 
greatest problem areas and prioritize efforts, 
in case of limited resources, for example. 
Cultivated areas with high vulnerability 
to runoff in the lower section of WE-38 
would benefit from other relevant informa-
tion such as landscape position (Buda et al. 
2009a; Needelman et al. 2001, 2004) and 
presence of a restrictive layer (Buda et al. 
2009b; Gburek et al. 2006), which affect 
runoff and thus erosion vulnerability. 

In watersheds with flat slopes (<2%), the 
only factors that could affect the runoff com-
ponent of the SVI was the hydrologic soil 
group and the K-factor value relative to the 
0.28 threshold. However, all these watersheds 
had large proportions of hydrological soil 
group D soils and, in most cases, the K-factor 
was <0.28, which resulted in equal and large 
fractions of land with low slopes and low vul-
nerability to runoff, and consequently high 
values of r2 between fractions of watershed 
(or cropland) in each slope and SVI category 
(table 4). All the watersheds with flat slopes 
and poorly drained soils were artificially 
drained. Vulnerability to leaching was there-
fore raised by two classes, thus compressing 
four classes into two classes. Baffaut et al. 
(2020) made a separate evaluation of the SVI 
in the presence of artificial drainage, which 
brings additional complexity for the leaching 
component (per SVI definition, table 3), but 
also for the runoff component. In Goodwin, 
the lack of discernment of the SVI may not 
be as important because the vulnerability to 
runoff was recognized, and most of the highly 
vulnerable land went out of cultivation at the 
dawn of the twenty-first century. However, if 
it was cropped, as it had been in the nine-
teenth until the mid-twentieth century, gully 
formation and sheet erosion would increase 
as historical pictures demonstrate (Kuhnle et 
al. 1996; Wilson et al. 2015). Other parame-
ters such as clay content have been successful 
predictors of the susceptibility to gully ero-
sion (Grissinger and Murphey 1989).

For watersheds with mixed slopes (Cedar 
Creek and Little River), the vulnerability to 
runoff was affected by the two other fac-
tors: hydrologic soil group and K-factor. The 
resulting relationship between fractions of 
watershed in each slope category and each 
SVI category was weak (r2 = 0.024), and the 
regression slope was not significantly differ-
ent from 0 (table 4). Incidentally, it is in these 
watersheds that scientists agreed most with 
the SVI outcomes, finding that vulnerability 
to runoff was well described by the SVI.

Both Mark Twain Lake and Riesel were 
representative of mixed slopes but were 
dominated by a single hydrologic soil group 
(D; table 1) and K-factors >0.28. Definitions 
of SVI given in table 2 implied that soils in 
the lowest slope category had a moderate 
vulnerability due to runoff, those with 2% 
to 4% slope had a moderately high vulner-
ability, and everything with >4% slope had 
a high vulnerability due to runoff. Since the 
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Figure 2
Soil Vulnerability Index (SVI) runoff potential for 13 sites.
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hydrologic soil group and the K-factor were 
uniform across these two watersheds, the 
only factor controlling risk of degradation by 
runoff as indicated by the SVI was the slope. 
This was confirmed by aerial photos show-
ing signs of soil degradation or presence of 
terraces on the steepest cropped land (Chan 
et al. 2017). However, rills have also been 
observed on areas with <2% slope in Mark 
Twain Lake watershed where the argillic 
horizon was close to the surface (<10 cm), 
a sign of vulnerability to soil erosion linked 
to concentrated flow. These were observed in 
no-till areas, i.e., where a conservation prac-
tice to limit soil erosion had already been 
implemented but was not sufficient to prevent 
degradation. They certainly also occurred on 
tilled areas, but tillage regularly erased them. 
With a low or moderate SVI vulnerability to 
runoff, the need for conservation measures 
may be overlooked. Additional informa-
tion may provide the missing information 
to describe accurately the vulnerability to 
runoff under these very vulnerable condi-
tions. For example, landscape features such as 
slope length (Chaplot and Bissonnais 2003; 
Jamison and Peters 1967), depth to a restric-
tive layer (Buda et al. 2009b; Gburek et al. 
2006), depth to claypan (Chan et al. 2017), 
spatial scale of landscape pattern change over 
distance (Fiener et al. 2011), or landscape 
dissecting features that disrupt runoff ener-
gies (Jencso and McGlynn 2011) have been 
shown to increase vulnerability to runoff.

Results from the SVI tool within the 
ACPF framework varied depending on the 
dominant slope of the site (table 5). Results 

were examined with regards to the slope 
class breaks used for calculating the SVI. If 
the range of slope metrics by map unit did 
not cross a SVI class threshold (for exam-
ple, low relief landscapes with dominant 
steep or flat slopes), the resulting SVI class 
distribution did not alter substantially (table 
5). Incorporating SVI tool into ACPF can 
thus provide flexibility in using the differ-
ent slope preferences based on topographic 
parameters. When calculating the SVI within 
the ACPF, all the inputs were calculated on 
a map unit basis within the study area. As 
expected, calculating the SVI using an aver-
age cell DEM slope within each map unit 
reduced the variability of the SVI calcu-
lated using DEM-derived cell-by-cell slope 
determination (table 5). Doing so may bring 
consistency to a tool that was intended to be 
a reclassification of SSURGO soil map unit 
attributes. The flexibility of selecting one or 
several slope averaging methods seems to 
provide results close to those calculated on a 
cell-by-cell basis. 

Effect of Hydrologic Soil Group on SVI 
Vulnerability to Leaching. Hydrologic soil 
group had a very strong impact on the leach-
ing component of the SVI, and in many 
cases, the maps of hydrologic soil group and 
SVI vulnerability to leaching were exactly 
the same (Riesel, Mark Twain Lake, Delta 
Research Center fields, and Upper Big 
Walnut Creek) or very similar (Upper Snake 
Rock, Beasley, and Cedar Creek). The SVI 
leaching component changed with slope 
and soil erodibility K-factor only for soils in 
the hydrologic soil group B. For soils in the 

hydrologic soil group A, slope was a factor 
(table 3), but amounts of A soils were too 
small in these watersheds, except WE-38, to 
assess the effect of slope on the SVI for these 
soils. Grouping watersheds based on their 
dominant slope characteristics was not as 
useful for the leaching component of the SVI 
as it was for the runoff component. Instead, 
the critical factor was the fraction of soils in 
hydrologic soil group B (table 4). For those 
with high proportions (>50%) of hydrologic 
soil group B soils, the relationship between 
fractions of watershed in each hydrologic 
soil group and each SVI leaching vulnera-
bility category was weak (r2 = 0.14; table 4). 
In areas with more than 50% hydrologic soil 
group B, SVI leaching vulnerability changed 
with soil erodibility K-factor. For those 
with moderate proportions (20% to 50%) of 
hydrologic soil group B soils, the relation-
ship between fractions of watershed in each 
hydrologic soil group and each SVI leaching 
vulnerability category was weak, but slightly 
better than watersheds with dominantly B 
soils (r2 = 0.21; table 4). The other group of 
watersheds had low proportions of hydro-
logic soil group B soils (<20%), and for those, 
the hydrologic soil group was the main factor 
driving vulnerability to leaching (r2 = 0.99; 
table 4). In areas with hydrologic soil group 
C and D soils, the leaching component of 
the SVI changed only if the soil contained 
enough organic matter to be considered an 
organic soil. Only the Choptank watershed 
had soils with organic layers, which resulted 
in greater vulnerability to leaching, which is 
further discussed by Baffaut et al. (2020). 

Table 4
Relationship between the fractions of watershed in each slope category (10 m digital elevation model [DEM]) and in each category of the runoff 
component of the Soil Vulnerability Index (SVI); and the fractions of watershed in each hydrologic soil group (HSG) category and each category of 
the SVI leaching component using a 10 m DEM.

					     Number of						      Standard error of 	
Slope/HSG category		 Number of sites	 data points	 r2		  Regression slope		  regression slope

Dominant slope condition					   
  Steep slopes 		  1		  4		  0.95**		  0.90**			   0.15
  Flat slopes, 		  8		  28		  0.68**		  0.54**			   0.07
  artificial drainage
  Mixed slopes		  2		  8		  0.02		  0.18			   0.54
  Mixed slopes (uniform	 2		  6		  0.98**		  0.90**			   0.06
  hydrologic soil group)
  All watersheds		  13		  50		  0.38**		  0.48**			   0.09

Fraction of HSG B soils					   
  High (>50%)		  2		  8		  0.14		  –0.44			   0.44
  Moderate (20% to 50%)	 4		  16		  0.21		  0.54			   0.28
  Low (<20%)		  7		  26		  0.99**		  0.99**			   0.02
  All watersheds		  13		  50		  0.50**		  0.74**			   0.11
**Indicates significance at the 0.05 level of the slope or coefficient of determination at the 0.05 level.
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Table 5
Comparison of Soil Vulnerability Index (SVI) classes distribution (%) using cell-by-cell slope calculation with SVI distribution using the Agricultural 
Conservation Planning Framework (ACPF) tool.

				    SVI distribution (%) 		  SVI distribution (%) using ACPF tool
Watershed	 SVI class*	 using cell-by-cell slope	 Mean slope	 Median slope	 75th percentile slope

WE-38		  L		  14			   9		  9		  9
		  M		  0			   5		  25		  0
		  MH		  12			   0		  0		  0
		  H		  74			   86		  66		  91
Delta		  L		  57			   57		  57		  43
		  M		  43			   43		  43		  32
		  MH		  0			   0		  0		  14
		  H		  0			   0		  0		  11
Choptank		  L		  67			   88		  93		  82
		  M		  17			   7		  6		  6
		  MH		  12			   5		  1		  11
		  H		  4			   0		  0		  1
Upper Snake Rock	 L		  50			   50		  50		  50
		  M		  14			   6		  6		  6
		  MH		  31			   42		  42		  42
		  H		  5			   2		  2		  2
Goodwin		  L		  27			   2		  32		  1
		  M		  39			   0		  43		  0
		  MH		  15			   81		  19		  51
		  H		  19			   17		  6		  48
Beasley		  L		  61			   59		  65		  59
		  M		  24			   17		  24		  17
		  MH		  13			   19		  11		  19
		  H		  2			   5		  0		  5
South Fork		 L		  38			   44		  44		  44
of Iowa River	 M		  37			   56		  56		  56
		  MH		  17			   0		  0		  0
		  H		  8			   0		  0		  0
Walnut Creek	 L		  39			   28		  31		  27
		  M		  38			   16		  54		  12
		  MH		  19			   53		  14		  58
		  H		  4			   3		  1		  3
Upper Big		  L		  17			   17		  18		  0
Walnut Creek	 M		  42			   28		  38		  0
		  MH		  31			   49		  42		  80
		  H		  10			   6		  2		  20
Cedar Creek	 L		  22			   45		  45		  20
		  M		  23			   54		  55		  16
		  MH		  30			   1		  0		  1
		  H		  25			   0		  0		  63
Little River		 L		  65			   63		  64		  27
		  M		  21			   23		  24		  55
		  MH		  6			   13		  12		  8
		  H		  8			   1		  0		  10
Riesel		  L		  6			   6		  6		  5
		  M		  48			   0		  49		  0
		  MH		  39			   94		  45		  93
		  H		  7			   0		  0		  2
Mark Twain Lake	 L		  0			   0		  0		  0
		  M		  65			   59		  66		  29
		  MH		  24			   31		  27		  51
		  H		  11			   10		  7		  20
*L = low, M = moderate, MH = moderately high, and H = high.	
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Effect of Digital Elevation Model 
Resolution on SVI Vulnerability to Runoff. 
Since the runoff component of the SVI was 
heavily dependent on slope for many of the 
watersheds, and since slope was calculated for 
each cell of the DEM, it was expected that 
DEM resolution would impact the results 
for that component of the SVI. As expected, 
DEM resolution did not affect the results 
for the leaching component. The SVI leach-
ing component depended primarily on the 
hydrologic soil group, which is not affected 
by DEM resolution. For the runoff compo-
nent, DEM resolution affected the SVI for 
croplands in 8 out of 13 watersheds when 
comparing the 10 m and 30 m DEM, which 
is almost 60% of the watersheds (table 6). 
Comparison of results obtained with the 10 
m DEM and a finer resolution DEM (from 1 
m to 5 m depending on availability) showed 
that croplands in 3 out of the 8 watersheds 
for which a fine resolution DEM did exist 
were affected. Watersheds for which a 10 m 
and a 30 m DEM did not affect SVI results 
included WE-38, Riesel, Upper Snake Rock, 
Little River, and Delta Water. For these 
(except WE-38), a high-resolution (<10 
m) DEM was not available for assessment. 
For WE-38, SVI distribution was similar 
whether using a 30, 10, or 5 m DEM. This 
can be explained by the uniform topogra-
phy in this watershed, which remains steep 
(>6%) no matter the cell size from which 
slopes were calculated. 

In watersheds with mixed slopes, 
high-resolution DEM permitted identifying 
short but steep slopes such as faces of ter-
races, gullies, stream banks, or banks along 
ditches, roads, and rivers as high vulnera-
bility for runoff. Conversely, coarser DEM 
resolution resulted in increased fractions of 
watersheds in the lowest category of slopes 
and a decrease in the fraction of watersheds 
in the steepest slope categories (figure 3). 
Thus, there is a possibility that high vulner-
ability areas (with >6% slope) that require 
attention could fail to be identified with a 
coarser DEM. While controlling erosion 
and nutrient inputs to the water body, steep 
banks along roads or railways may be of 
greater importance; however, on the other 
hand, those areas may need to be buffered 
for any cropland management program. 
Hence, masking out noncropped areas 
should be recommended, especially with 
fine scale assessments.

Optimal DEM resolution varied with 
lengths of the features that may cause 
problems. If gullies need to be identified, a 
resolution compatible with the width and 
length of these gullies is preferable. Finest 
DEM (1 m) in Goodwin Creek water-
shed was able to identify gullied areas as 
high vulnerability. Ditch bank erosion may 
be a significant problem in watersheds like 
Beasley Lake, and should not be buffered 
out when using a high-resolution DEM. 
For sites that have varying slopes across a 

topo-sequence, the SVI used in combina-
tion with a high-resolution DEM gives the 
ability to identify areas within a field that are 
of greater concern. While this may not have 
been the original intent of the SVI, conser-
vation planning may benefit from the ability 
to identify those areas across a field.

Comparison with Model Outputs. 
Comparison results between land vulnera-
bility assessed by the SVI and model results 
were inconsistent from watershed to water-
shed. In Goodwater Creek watershed (Chan 

Table 6
Distributions of the runoff and leaching components of the Soil Vulnerability Index (SVI) as 
affected by digital elevation model (DEM) resolution.

				    Runoff component of SVI DEM resolution

Watershed	 SVI class*	 High resolution†	 10 m	 30 m

Goodwin Creek 	 L	 28	 27	 35
		  M	 37	 39	 37
		  MH	 15	 15	 20
		  H	 20	 19	 8

Mark Twain Lake	 L	 —	 1	 1
		  M	 —	 61	 64
		  MH	 —	 24	 26
		  H	 —	 14	 9

Choptank		 L	 66	 67	 77
		  M	 15	 17	 19
		  MH	 14	 12	 4
		  H	 5	 4	 0

Beasley		  L	 52	 61	 66
		  M	 21	 24	 27
		  MH	 22	 13	 7
		  H	 5	 2	 0

South Fork	 L	 35	 38	 46
of Iowa River	 M	 36	 37	 39
		  MH	 19	 17	 12
		  H	 10	 8	 3

Walnut Creek	 L	 36	 39	 44
		  M	 36	 38	 43
		  MH	 21	 19	 12
		  H	 7	 4	 1

Upper Big		 L	 15	 17	 20
Walnut Creek	 M	 36	 42	 52
		  MH	 33	 31	 24
		  H	 16	 10	 4

Cedar Creek	 L	 19	 22	 27
		  M	 19	 23	 31
		  MH	 31	 30	 28
		  H	 31	 25	 14
*L = low, M = moderate, MH = moderately high, and H = high.
†The high resolution DEM was 1 m for Goodwin Creek watershed; 2 m for Choptank watershed, 
Cedar Creek watershed, Upper Big Walnut Creek, and Walnut Creek; 1.5 m for Beasley Lake wa-
tershed; and 3 m for South Fork of Iowa River. 
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et al. 2017), the ranges of constituent yields 
(sediment, total N, and total P) for the high, 
moderately high, and moderate vulnerability 
classes were distinct and consistent with SVI 
vulnerability classification (table 7). However, 
there was no clear differentiation between 
the total N and total P yields for the low and 
moderate SVI vulnerability classes. In the 
well-drained Tuckahoe watershed (Upper 
Choptank watershed), simulated NO3 yields 
in surface runoff and leachate (simulated 
leaching and NO3 transport by lateral flow) 
were inconsistent with SVI classification. 
Nitrate transported by runoff was smaller for 
areas with high SVI vulnerability than with 
low vulnerability (table 7). Average loss of 
organic N, which is transported by surface 
runoff, was consistent with SVI ranking. In 
the poorly drained Greensboro watershed 
(also in the Upper Choptank watershed), 
simulated NO3 yields in surface runoff were 
inconsistent with SVI classification, while 
simulated organic N in runoff and leached 
N yields were consistent. However, there 
was no or little differentiation between the 
moderately high and high vulnerability class. 
Lee et al. (2018) concluded that SVI runoff 
classification scheme was suited for identify-
ing critical source areas vulnerable to organic 
N in Greensboro, while the SVI leaching 
classification scheme was suited for NO3. 
In Beasley Lake watershed, sediment yields 
were not differentiable between SVI classes 
(table 7) except for the highest vulnerability 
class, and in Goodwin Creek watershed sed-
iment yields differed only for the moderately 
high and high vulnerability classes. 

Similarity rates between classification based 
on SVI and model results (table 8) confirmed 
the previous findings. Overall, similarity rates 
were good or acceptable when the processes 
matched the SVI component, but with some 
exceptions. In Goodwater Creek (Chan 
et al. 2017), surface runoff causes sediment 
and nutrient movement. Model based vul-
nerability was similar to vulnerability based 
on the runoff component of the SVI (table 
8), and was consistent with the judgement 
of local scientists. In Greensboro, which is 
dominated by poorly drained soils and has 
an extensive and dense network of drainage 
ditches, vulnerability classification based on 
the leaching component of SVI and model 
results was similar for leached N. Similarly in 
Tuckahoe, which has well-drained soils and 
not as much artificial drainage, classification 
based on the runoff component of SVI and 

model results was similar for constituents 
transported by surface runoff. However, sim-
ilarity was poor for leached constituents. Lee 
et al. (2018) attributed this poor similarity to 
varying soil water capacity across the water-
shed. In Beasley, which features drainage 
ditches around each field, similarity of SVI 
classification and simulated sediment yields, 
which are controlled by surface runoff pro-
cesses, was poor. Similarity rate was better 
in Goodwin, but sediment yields were not 
fully consistent with SVI classification. Yet, 
land taken out of production in these two 
watersheds was land primarily classified with 
high vulnerability by the SVI, a confirma-
tion of the potential for the SVI to identify 
high vulnerability areas. Overall, the models 

showed inconsistent results between SVI 
classification and average amounts of sedi-
ment or nutrients lost per unit area (tables 
7 and 8). 

Summary and Conclusions
The SVI was developed by the USDA NRCS 
CEAP to classify cropland vulnerability to 
runoff and leaching into four categorical 
classes—low, moderate, moderately high, 
and high. The SVI calculation required basic 
ArcGIS tools using easily available input 
parameters from the SSURGO database and 
a DEM, and was applicable at scales ranging 
from a single field to a watershed or region. 
In this study, SVI maps for 13 watersheds 
were generated and evaluated by scientists 

Figure 3
Slope category ([a] 3 m digital elevation model [DEM], [b] 10 m DEM, and [c] 30 m DEM) for 
the runoff component of the Soil Vulnerability Index (SVI) in the croplands of the South Fork 
of Iowa River. 
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with knowledge of the watersheds. Major 
conclusions of the study are the following:
•	 In watersheds with mixed slopes and 

hydrologic soil groups, the SVI resulted 
in vulnerability spread out across the four 
categories, thus informing where efforts 
need to focus. The location of areas with 
high and low vulnerability was consistent 
with scientists’ knowledge of vulnerabil-
ity in these watersheds. 

•	 In watersheds with uniform hydrologic 
soil groups, the slope was the dominant 
factor. In these cases, it was important to 
use a DEM to calculate the slope instead 
of using the SSURGO representative 
slope to obtain more discernment of vul-

nerability. Two alternatives are possible: 
using the DEM cell-by-cell method to 
calculate slope and determining the SVI 
for each DEM cell, or using the DEM 
to calculate a median, average, or selected 
quantile of choice slope for each soil map 
unit. In the latter case, the SVI was then 
determined for each soil map unit.

•	 In areas where both slopes and hydrologic 
soil group were uniform, and in areas with 
uniformly elevated slopes, vulnerability 
was also uniform and the SVI was not 
able to distinguish areas that were more 
or less vulnerable than others. Yet, even in 
these cases, scientists with knowledge of 
the watersheds have been able to identify 

factors that affect vulnerability: depth of 
restrictive layer, clay content, slope length, 
and landscape position to name a few of 
those identified within this study. 

•	 The SVI classification was compared 
with model outputs from AGNPS and 
SWAT in five sites. The SVI classification 
matched with model outputs when the 
predominant mode of nutrient transport 
matched with the SVI component. SVI 
runoff classification was consistent with 
model outputs for sites without artifi-
cial drainage (Goodwater and Tuckahoe) 
where sediment and nutrient movement 
was primarily through surface runoff. In 
sites with artificial drainage (Greensboro), 

Table 7
Contaminant loads from hydrologic response units (HRUs) by vulnerability class determined with the Soil Vulnerability Index (SVI).

						      Mean and standard deviation of contaminant load

SVI category*					     Low		  Moderate		 Moderately high	 High

Goodwater
  Sediment in surface flow (t ha–1)			   0.7 (0.4)		  1.2 (0.6)		  2.2 (0.2)		  5.1 (0.6)
  Total N in surface flow (kg ha–1)			   9 (1.7)		  11 (2.2)		  15 (0.5)		  22 (1.3)
  Total P in surface flow (kg ha–1)			   0.7 (0.2)		  1.1 (0.3)		  1.7 (0.1)		  2.9 (0.2)
Tuckahoe					   
  NO3-N in surface flow (kg ha

–1)				   0.72 (0.33)	 1.42 (0.10)	 1.49 (0.26)	 0.58 (0.14)
  Organic N in surface flow (kg ha–1)			   10.0 (6.44)	 22.47 (5.02)	 27.52 (9.83)	 38.72 (6.59)
  Leached N (kg ha–1)					    35.78 (8.29)	 40.66 (2.79)	 36.98 (5.10)	 38.98 (5.48)
Greensboro				  
  NO3-N in surface flow (kg ha

–1)				   2.92 (2.43)	 3.96 (1.19)	 6.79 (1.10)	 2.08 (0.25)
  Organic N in surface flow (kg ha–1)			   21.40 (10.22)	 32.23 (5.40)	 43.26 (11.81)	 44.58 (3.67)
  Leached N (kg ha–1)†				    7.87 (9.29)	 14.12 (7.74)	 23.41 (5.80)	 26.58 (6.29)
Beasley				  
  Sediment in surface flow (t ha–1)			   5.01 (3.7)		 5.7 (4.3)		  5.4 (4.3)		  22 (25)
Goodwin				  
  Sediment in surface flow (t ha–1)			   7.4 (2. 5)		  7.5 (0.67)		  13 (11)		  40 (44)
Notes: N = nitrogen. P = phosphorus. NO3 = nitrate.
*The runoff component of SVI was used for comparison of SVI classes and yields of contaminants in surface runoff. The leaching component of SVI 
was used for evaluation against leached N yields. 
†Includes N leached through the soil profile and transported through subsurface flow.

Table 8
Similarity rate between vulnerability classification based on the Soil Vulnerability Index (SVI) and model outputs.

	 	 	 	 Classification similarity rate (%)

		  Drainage	 Model	 Surface runoff	 Surface runoff	 Surface runoff	 Surface runoff total			 
Watershed	 characteristics	 used	 sediment	 total P	 NO3-N	 N or organic N	 Leached N

Goodwater 	 Poor	 SWAT	 73	 73	 —	 86	 —
Tuckahoe 	 Fairly good	 SWAT	 —	 —	 81	 70	 14
Greensboro	 Poor	 SWAT	 —	 —	 34	 46	 71
Beasley	 Poor	 AGNPS	 45	 —	 —	 —	 —
Goodwin	 Poor	 AGNPS	 69	 —	 —	 —	 —
Notes: P = phosphorus. NO3 = nitrate. N = nitrogen. SWAT = Soil and Water Assessment Tool. AGNPS = Annualized Agricultural Non-Point Source.
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model outputs for leached N were con-
sistent with SVI leaching classification. 
Model outputs for sediment yields in 
Beasley and Goodwin were not fully 
consistent with SVI classification because 
primary route of sediment loss did not 
match with the SVI component.

Hence, the SVI can be used as a prelim-
inary assessment tool to identify soil and 
topography based inherent vulnerability of a 
watershed and thus help in developing con-
servation plans and mapping vulnerability 
in a watershed. However, site specific infor-
mation on slope length, depth to restrictive 
layers, landscape position, and historical 
information could increase the reliability and 
usefulness of the index. Conclusions from 
this study are summarized in the SVI syn-
thesis paper by Thompson et al. (2020), along 
with other companion studies.
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