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Economic dimensions of soil health practices that 
sequester carbon: Promising research directions

S oil health is a key element in 
enhancing agricultural produc-
tion, environmental sustainability, 

and food system resilience (Farnsworth 
2015; Stevens 2018). The USDA Natu-
ral Resources Conservation Service 
(NRCS) defines soil health as “the con-
tinued capacity of soil to function as a 
vital living ecosystem that sustains plants, 
animals, and humans” (Pankhurst et al. 
1997; Farnsworth 2015; Bowman et al. 
2016). A common theme points to soil 
health as an indicator of the soil’s ability 
to support life, withstand environmental 
stresses, and endure as an important part 
of a resilient ecosystem. Because one of 
the key individual components of soil 
health is carbon (C) in organic matter 
(Idowu et al. 2009; Morrow et al. 2016), 
enhancing soil health also has a prominent 
role to play in addressing climate change 
(Stockmann et al. 2013; Schipanski et al. 
2014; Paustian et al. 2016). Improving soil 
health is a natural climate solution (NCS) 
that increases C storage in soils (Poeplau 
and Don 2015; Griscom et al. 2017; Jian 
et al. 2020). 

Given soil health’s key role in sustaining 
agricultural productivity and enhanc-
ing C storage, there is significant interest 
in promoting agricultural management 
decisions, practices, and production sys-
tems that can help maintain or improve 
soil health. These include practices such 
as cover cropping, no-till residue and 
tillage management, conservation crop 
rotations, mulching, and nutrient man-
agement. However, adoption of these soil 
health practices by farmers is inextricably 
linked to whether private economic ben-
efits from implementing these practices 
(i.e., benefits to the farmer) outweigh the 
associated private adoption costs. In addi-
tion, understanding the environmental 
benefits from adopting these soil health 
practices (i.e., external benefits to soci-
ety through ecosystems services) can help 
inform design of public policies seeking to 
align private incentives with public envi-

ronmental goals (for example, designing of 
subsidy payments to farmers).

In this paper, we describe the eco-
nomic dimensions associated with the 
decision to adopt soil health practices. 
These are important concepts that will 
help soil and water conservation prac-
titioners further encourage adoption of 
soil health practices. Here, we summa-
rize recent literature that examines the 
economic benefits and costs of cover 
crops and no-till systems for the United 
States, in general, and the understudied 
Northeast region of the United States, in 
particular. The Northeast is chosen here 
because several states in this region (i.e., 
Maryland, Pennsylvania, Delaware) are 
among the top states in terms of per-
centage cover crop and no-till adoption 
(Zulauf and Brown 2019a, 2019b). Yet 
there have been few economic studies of 
soil health practices for this region (more 
on this below). The Northeast region of 
the United States in this study includes 
Connecticut, Delaware, Maine, Maryland, 
Massachusetts, New Hampshire, New 
Jersey, New York, Pennsylvania, Rhode 
Island, and Vermont. Adoption of cover 
crops and no-till varies widely across the 
United States (figure 1). Key research 
directions are identified that would 
enhance understanding of the econom-
ics of soil health practices and provide 
insights into policies that can help encour-
age adoption of these C-sequestering soil 
health practices.

SOIL HEALTH PRACTICES THROUGH AN 
ECONOMIC LENS

Economic considerations are one of the 
main elements that an individual farmer 
typically assesses when making decisions 
to adopt soil health management practices. 
Therefore, it is important to provide an 
economic framework as a lens for under-
standing how one assesses the various factors 
influencing the decision to adopt soil health 
practices and how one evaluates the overall 
economic impacts of these practices. 
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Building on the “ecosystem-cen-
tered” NRCS definition of soil health, 
our economic framework conceptualizes 
soil health as encompassing the physical, 
chemical, and biological characteristics 
of the soil, therefore not simply equating 
soil health to soil fertility (Stevens 2018). 
Three key factors—initial soil conditions, 
agricultural management practices, and 
environmental conditions—interact and 
eventually influence soil health (figure 2). 
Of these three key factors, only agricul-
tural management practices are directly 
under the control of the farmer. Moreover, 
specific adoption of agricultural manage-
ment practices that influence soil health 
depends on the economic benefits and 
costs associated with using these practices. 
Soil health is also linked to environmen-
tal outcomes that society values (e.g., 
reduced soil erosion, reduced nitrogen [N] 
and phosphorus [P] runoff to water bod-
ies, and sequestration of atmospheric C in 
the soil from use of cover crops [Poeplau 
and Don 2015; Jian et al. 2020]). Hence, 
an important dimension when think-
ing about the economics of soil health is 
delineating between private versus exter-
nal (or societal) benefits and costs (table 
1). In terms of soil health practices, farm-
ers typically bear all the cost of adoption 
(when cost-share subsidies are not con-
sidered), but benefits are received by both 
the farmer and society. This “mismatch” in 
terms of who receives benefits and who 
bears the costs suggests that there may be 
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“underprovision” of soil health benefits 
from the adoption of soil health–enhanc-
ing practices. Since farmers bear all the 
cost, they will only adopt soil health prac-
tices commensurate to the direct benefits 
they receive without typically considering 
the environmental benefits to society. This 
potential market failure suggests a likely 
role for public policy in terms of helping 
farmers “internalize” the external ben-
efits of soil health practices, by designing 
interventions (e.g., subsidies) for optimal 
societal provision of soil health benefits 
(Stevens 2018).

Another important dimension in the 
economics of soil health is the inherently 
dynamic nature of economic outcomes that 
arise from adoption of soil health manage-
ment practices. That is, the action to adopt a 
soil health management practice influences 
economic outcomes during the period of 
adoption, as well as in future periods. The 
management practice effects in each future 
period are governed by evolving climatic, 
environmental, and soil conditions, and 
the natural process by which soil health 
responds to each management practice. 
Therefore, economic outcomes from adop-
tion of soil health management practices 
dynamically evolve and likely accumulate 
depending on the number of years the 
particular management practices are used 
(Myers et al. 2019). Variability of economic 
outcomes over time (e.g., yield stability 
or yield risk) is then also a factor when 
considering the economics of soil health 
management practices (Boyer et al. 2018; 
Stevens 2018). Whether soil health practices 
reduce variability in yields and revenues 
over time is a pertinent economic question 
given the dynamics.

WHAT HAVE WE LEARNED FROM THE 
ECONOMIC LITERATURE ON SOIL 

HEALTH PRACTICES? 
Much of the literature that examines the 
economics of soil health practices in the 
United States focuses on the private ben-
efits and costs associated with adopting a 
particular soil health practice. Long-term 
studies that account for the dynamics and 
external dimensions of soil health man-
agement practices have been limited. For 
cover crops, the recent economic literature 
has mainly used partial budget analysis and 

generally finds that short-term (i.e., one 
year), private benefits from adoption of 
cover crops typically are not higher than 
the initial costs of implementation (Myers 
et al. 2019; Plastina et al. 2018a, 2018b, 
2020). This lack of short-term private 
net benefit to growers is often seen as a 
major factor for the low (~4%) cover crop 
adoption in the United States (Zulauf and 
Brown 2019a) (figure 1a). Long-term use 
of cover crops is likely needed for farm-

ers to receive positive net economic 
returns (Myers et al. 2019; Boyer et al. 
2018). Moreover, an aspect of cover crop 
economics that has not been thoroughly 
investigated is the economic value associ-
ated with the potential external benefits of 
cover crop use (Bergtold et al. 2017). 

For no-till systems, the economic 
literature indicates that private net eco-
nomic benefits from adoption are variable 
and site-specific. That is, private benefits 

Figure 1
(a) Cover crop acres and (b) no-till acres as a percentage of state total crop acres in 
the United States based on the 2017 US Census of Agriculture. 
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and costs depend on factors such as soil 
characteristics, local climatic conditions, 
cropping patterns, and other attributes of 
the overall farming operation (Toliver et al. 
2012; Ding et al. 2009; Cusser et al. 2020). 
However, the observed increase in no-till 
adoption rates over the last few decades 
(~37% of US cropland area) suggests that 
farmers are adopting these no-till systems, 
and implies that these systems generally 
pay off for US farmers (Zulauf and Brown 
2019b) (figure 1b).

The economics literature focusing on 
soil health practices in the US Northeast 
follows the main trends found in the 
United States in general. However, many 
of the economic studies of cover cropping 
and no-till systems in this region were 
conducted prior to 2010 using budget-
ing type approaches (Hanson et al. 1993; 
Lichtenberg et al. 1994; Cavigelli et al. 
2009; White et al. 2019). Aside from these 
budget-based analyses (usually using plot-
level experimental data), economic studies 
in this region have also used biophysical-
economic simulation models to examine 
long-term soil, environmental, and eco-
nomic outcomes (Lu et al. 2000; Watkins 
et al. 2002). These studies have generally 
shown favorable economic and environ-

mental outcomes from long-term use of 
cover crops or no-till systems. Note, how-
ever, that most of the soil health–related 
studies in the region have focused on the 
effects of cover crops or no-till systems on 
environmental, agronomic, and soil health 
outcomes, rather than economic outcomes 
per se. Moreover, these cover cropping and 
no-till economic studies were conducted 
in Maryland, New York, and Pennsylvania, 
with limited research in other Northeast 
states. Notwithstanding the limited eco-
nomic studies in this region, a number 
of Northeast states rank among the top 
in terms of adoption of cover cropping 
and no-till systems based on the 2017 US 
Census of Agriculture (Zulauf and Brown 
2019a, 2019b) (figure 1). Maryland and 
Delaware lead the nation in both cover 
crop and no-till adoption percentages, 
with 8 of the top 10 cover crop states in 
the Northeast (figure 1). 

An important strand of economic lit-
erature that has been conducted mostly 
in the Northeast (Maryland in particu-
lar) is one that investigates how cost-share 
payments affect adoption of soil health 
practices like cover crops and conservation 
tillage (Fleming 2017; Fleming et al. 2018; 
Lichtenberg et al. 2018). These studies spe-

cifically look at “additionality” provided 
by these programs, where additionality is 
defined as the adoption of conservation 
practices that would not have occurred in 
the absence of cost-share payments. These 
studies typically find strong, direct addition-
ality (where cost-share payments increase 
cover crop acreage) and sometimes they 
also find indirect additionality (where cost-
share payments also encourage adoption 
of other conservation practices). Maryland 
and Delaware have long-standing state-
funded cost-share programs, in addition 
to the federal conservation programs, that 
have most likely helped encourage adop-
tion of cover crops and no-till systems in 
these states. These studies highlight the 
importance of analyzing conservation pay-
ment programs to determine how effective 
their designs are in encouraging adoption 
of conservation practices like cover crops 
and no-till systems.

PROMISING RESEARCH DIRECTIONS IN 
THE ECONOMICS OF SOIL HEALTH

Given the current state of the soil health 
economic literature, more long-term eco-
nomic studies are needed to estimate the 
causal relationships among soil health prac-
tices, soil health indicators, and economic 
outcomes using longitudinal data sets and 
rigorous statistical techniques (Cusser et 
al. 2020). Dynamic issues associated with 
cover crops and no-till (e.g., risk impacts 
and investment analysis under uncertainty) 
are also topics that need further study. 
Geographical heterogeneity of soils and 
agricultural production systems also needs 
to be recognized, and economic evalua-
tions of cover crop or no-till use will likely 
need to be conducted for different regions. 
Successful implementation of longer-term 
evaluations may require interdisciplin-
ary collaborations among economists, soil 
conservation experts, agronomists, and/
or other scientists. It is critical that econo-
mists responsible for assessing economic 
impacts are intimately involved at the start 
of the conceptualization and development 
of the long-term evaluation of soil health 
practices. Having economists involved 
at the onset will allow for more pointed 
long-term field-level evaluations of the soil 
health conservation strategies to determine 
whether these practices meet private prof-

Figure 2
Feedbacks from analysis of the economics of soil health practices. Analyzing the 
impact of management practices could improve understanding of policies for encour-
aging best soil management practices. Use of these best management activities 
can improve soil conditions (relative to some benchmark) and may lead to improved 
private economic benefits and public environmental benefits, such as carbon seques-
tration (see table 1). Further enhancements and analysis of the benefits of soil health 
practices then create feedback loops.
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itability and societal environmental benefit 
thresholds for sustained adoption.

In addition, use of more aggregate data 
sets, such as county-level, satellite-based 
data, needs to be explored as this can allow 
further study of a variety of economic 
issues (e.g., risk and dynamics) over a lon-
ger period of time and covering a wider 
geographical scale, which plot-level exper-
imental data usually do not adequately 
address. Collection of observational farm-
level data (rather than experimental data) 
on soil health practice adoption is impor-
tant to also ascertain how these practices 
influence economic outcomes on the 
farm. Factors affecting so-called “yield 
gaps” between field experimental out-
comes and on-farm economic outcomes 
can be identified when using information 
from farm adopters and nonadopters of 
these soil health practices (van Ittersum et 
al. 2013). The yearly farm survey data col-
lected by the USDA National Agricultural 

Statistics Service (e.g., the Agricultural 
Resource Management Survey and the 
US Census of Agriculture) continue to be 
essential for understanding the long-term 
economic and environmental outcomes of 
these C sequestering soil health practices. 

Use of nonmarket valuation techniques 
to estimate the societal external contribu-
tions (i.e., the ecosystem services) of soil 
health practices is another research avenue 
that is likely to be fruitful (Bergtold et al. 
2017). These types of studies can advance 
understanding of how cover crops, no-
till systems, and other soil health building 
practices influence environmental out-
comes (e.g., amount of C sequestered 
or N leaching avoided), and allow one 
to attach a value to these societal ben-
efits (i.e., provide an economic value to 
the C sequestration benefit), even if it is 
not a perfect estimate. Recognizing the 
value of these external benefits makes it 
possible to more accurately ascertain the 

total net benefits of these soil health con-
servation practices, and may help provide 
justification, as well as guidance, for devel-
oping conservation payment programs 
that encourage further adoption. 

Overall, economic studies based on 
long-term data, especially those that 
incorporate dynamics and value external 
benefits, would provide a more holis-
tic picture of the economic potential of 
adopting soil health management practices. 
These kinds of studies would give more 
meaningful information as compared to 
the simpler approach of showing private 
economic outcomes from short-term use 
of a practice. Demonstrating strong eco-
nomic outcomes over time would likely 
encourage further adoption of these soil 
health practices and will likely result in 
more C sequestration to help address the 
climate change challenge society faces. 

Last, further examination of the role and 
design of different conservation payment 

	
Table 1 
Economic dimensions of soil health management practice decisions.

Type	 Potential benefits (revenue increasing or cost decreasing)	 Potential costs (revenue decreasing or cost increasing)

Private	 Agronomic:	 Agronomic:	
(e.g., individual)	 • Increased yields (and revenues)	 • Increased cover crop seed costs
	 • Reduced fertilizer expenses	 • Increased labor and machinery cost (e.g., for planting 
	 • Reduced fuel cost (in no-till)	     cover crops)
	 • Better resilience to extreme weather events	 • Increased herbicide costs (e.g., for cover crop termination
	 • Yield stability over time	     and weeds in no-till systems)
	 • Grazing opportunities (from cover crops)	 • Decreased yield (e.g., if delayed planting due to delayed
	 Environmental:	     cover crop termination, among other reasons)
	 • Reduced soil erosion in farmer fields	 • Opportunity cost of labor for planting cover crops in the winter
	 • Decreased soil compaction	 • Decreased moisture available for cash crop (after planting
	 • Reduced nitrogen and phosphorus losses increasing 	     cover crops) 
	     nutrient use efficiency	 • May recruit unwanted wildlife (for cover crops)
	 • Better moisture retention in-season	 Environmental: 
		  • None
External	 Agronomic:	 Agronomic:
(e.g., societal)	 • Reduced pest and disease outbreak incidence (e.g., due 	 • Increased pest or disease incidence for neighbors due to
	     to beneficial insects)	     cover crops being a possible host
	 Environmental:	 Environmental:
	 • Reduced soil erosion on landscape	 • None
	 • Carbon sequestration (e.g., cover crops or no-till remove  
	     carbon dioxide from the air and store it in the form of carbon
	     in the plant and/or soil)
	 • Improved water quality (e.g., from reduced nitrate leaching)	
	 • Increased biodiversity (e.g., better environment for beneficial  
	     insects and pollinators)
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programs can inform development of 
public policies that aim to further incen-
tivize the adoption of soil health practices 
and C sequestration. There are studies that 
have investigated the effectiveness of cost-
share payment programs by examining 
whether these programs induce a positive 
change in the adoption of conservation 
practices, such as cover crops (Mezzatesta 
et al. 2013; Fleming 2017; Claassen et 
al. 2018). However, these studies typi-
cally have not separately investigated the 
effects of different cost-share programs 
(i.e., all payments from federal, state, and 
local sources are lumped together), or only 
the adoption effects of one specific pay-
ment program were examined. Studies 
that explore how different cost-share pay-
ment programs affect adoption of specific 
soil health practices, as well as the effects 
on disadoption after payments end, would 
be fruitful future research directions. For 
example, research that looks at the adop-
tion effects of government cost-share 
programs (like the Environmental Quality 
Incentives Program and the Conservation 
Stewardship Program) vis-à-vis the state 
level conservation payment programs 
(like the Maryland Agricultural and Water 
Quality Cost Sharing program) would 
provide important insights as to which 
cost-share payment structure or design 
is more effective in encouraging adop-
tion of soil health practices and result in 
more permanent use even without the 
cost-share. Moreover, how these conser-
vation payment programs interact with 
other government-supported safety net 
programs (e.g., the commodity programs 
from the farm bill, crop insurance, etc.) and 
affect soil health adoption decisions needs 
to be studied further as well (Schoengold 
et al. 2015). Separately, investigating the 
impact of private C market payments 
that encourage soil health practice adop-
tion and the state-level programs that 
utilize crop insurance premium discounts 
to incentivize adoption of soil health are 
promising future research avenues that can 
inform design of more effective conserva-
tion payment programs. 

The value of reducing climate change 
impacts to society is immense. Pursuing 
the research directions described above is 
an important step for understanding how 

the agricultural sector can contribute to 
achieving this goal. Investigating adop-
tion of soil health practices through an 
economic lens provides critical informa-
tion that can further incentivize the use of 
these C sequestering approaches. 
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