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Abstract: The Soil Vulnerability Index (SVI) uses widely available inputs from the SSURGO 
database to classify cropland into four levels of vulnerability to sediment and nutrient losses: 
Low, Moderate, Moderately High, and High. Previous work has identified inconsistencies in 
SVI assessments across the United States, possibly because neither precipitation amount nor 
intensity were included in the development of SVI. This study aimed to determine if rainfall 
characteristics influence the SVI classification and which ones are most critical. The objec-
tives were to (1) evaluate the impact of precipitation characteristics on land vulnerability to 
sediment loss, and (2) evaluate if rainfall characteristics alter the degree of agreement between 
the simulated sediment yield and SVI classification. The study focused on four Conservation 
Effects Assessment Project (CEAP) watersheds in Ohio, Missouri, Mississippi, and Pennsylvania 
for which sediment yields were simulated using previously calibrated models. The models 
were run with input precipitation data from these four watersheds. In addition, in order to 
examine a wider range of precipitation characteristics, model runs were made for the same 
four watersheds utilizing precipitation data from two CEAP areas in Georgia and Maryland. 
Sediment yields for all the cropland units in four of the watersheds were simulated using the 
Soil and Water Assessment Tool or the Annualized Agricultural Nonpoint Source Pollution 
Model using 1985 to 2014 precipitation data from all six areas as inputs. Similarities and 
differences between precipitation characteristics such as precipitation amount, intensity, and 
rainfall erosivity R-factors were compared with the similarities and differences in simulated 
sediment loss. Results confirmed that SVI is a useful tool for relative ranking of cropland at 
risk of erosion within a region, as SVI and the model-based vulnerability classifications agreed 
for 55% to 100% of the watersheds’ subunits. However, model-based classification of field 
vulnerability could shift due to changes in precipitation characteristics. Thus, the range of soil 
loss for each vulnerability class can shift from one region to another. The results suggest that 
precipitation intensity or annual R-factor may help improve the correspondence between 
vulnerability and the range of expected soil loss.
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Excessive sediments and pollution orig-
inating from upland areas is a serious 
problem for water bodies in the United 
States with 71% of lakes, reservoirs, and 
ponds, and 53% of rivers and streams 
assessed by the US Environmental 
Protection Agency classified as impaired 
(Niraula et al. 2013). Cropland areas with 
certain combinations of soil, land use/cover, 

and slope are more vulnerable than others 
in terms of nutrient and sediment loss and 
are defined as critical areas (Niraula et al. 
2013). Identifying these areas is important for 
cost-effective implementation of conserva-
tion practices. Models such as the Agricultural 
Policy Environmental eXtender (APEX), the 
Soil and Water Assessment Tool (SWAT), 
and the Annualized Agricultural Nonpoint 

Source Pollution model (AnnAGNPS) have 
helped to identify critical areas for sediment 
and nutrient runoff (Liu et al. 2016; Mudgal 
et al. 2012; Niraula et al. 2013; Pradhanang 
and Briggs 2014; Santhi et al. 2014). 
However, these simulation models are com-
plex and require significant data resources 
to evaluate each area of interest. For federal, 
state, or other local resource management 
authorities, indices derived from models and 
experimental knowledge are often preferred 
since they are simpler to use and require less 
data and computational power (Thompson 
et al. 2020).

The Soil Vulnerability Index (SVI) was 
developed by the USDA Natural Resources 
Conservation Service (NRCS) to serve as 
an interpretive tool to classify cropland areas 
on the basis of surface runoff and leaching 
risk, and to identify their associated ero-
sion and nutrient loss potential (Chan et al. 
2017; Thompson et al. 2020; USDA NRCS 
2012). It has been used to assess the needs 
for conservation practices in Chesapeake 
Bay watershed, Beasley watershed, and other 
locations in the United States as a conser-
vation planning tool (USDA NRCS 2019; 
Yasarer et al. 2020). That need is assessed by 
relating the vulnerability class of cropland 
to the number and types of practices imple-
mented on that land; it assumes that the 
more vulnerable land requires more soil and 
water conservation practices, and of different 
types. Currently, the SVI uses inputs from 
the US soils database (SSURGO) to rank 
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cropland into four vulnerability classes of 
Low, Moderate, Moderately High, and High 
(Chan et al. 2017). Major inputs include slope, 
hydrologic soil group, and soil erodibility. 
The influence of drainage and the presence 
of organic matter and rock fragments act as 
modifiers to the classification where the vul-
nerability is adjusted to increase or decrease 
based on the existence of these modifiers 
within the area of interest. Detailed informa-
tion on the development of the SVI can be 
found in Thompson et al. (2020) and the SVI 
user guide (USDA NRCS 2019). 

Even though the SVI is intended to be 
used throughout the United States, it was 
developed based on APEX model results in 
the Upper Mississippi, Ohio, and Tennessee 
River basins using rainfall characteristics of 
these areas (Chan et al. 2017; Thompson et 
al. 2020). Rainfall, which varies through-
out the United States, has a direct impact 
on soil detachment and transport of eroded 
particles via runoff, but characteristics of 
rainfall, amount or intensity, are not currently 
included in the SVI (Yasarer et al. 2020). 
The Vulnerability Classes structure of the 
SVI, similar to the NRCS Land Capability 
Classes, is intended to be relevant at the local 
level such that a Low SVI classification cor-
responds to soils less prone to runoff (and 
resulting sediment loss) than a Moderate 
classification, Moderate less than Moderately 
High, and so forth. When applying SVI to 
the same region, the index helps to identify 
the relative vulnerability of cropland in that 
region. For regions where rainfall character-
istics are different from those in the Upper 
Mississippi and Ohio-Tennessee region, dif-
ferences in rainfall amount, intensity, and 
frequency may impact the interpretation 
of SVI classification. For example, crop-
land areas with high annual precipitation 
may require more conservation practices to 
protect water and soil resources than indi-
cated by the SVI (Thompson et al. 2020). 
In these areas, the SVI would fail to identify 
undertreated fields. Therefore, a study on the 
impact of differing rainfall characteristics is 
needed to further improve the SVI classifica-
tion for regional interpretation.

The goal of this study is to determine how 
rainfall characteristics influence the SVI clas-
sification. The objectives were to (1) evaluate 
the impact of precipitation characteristics on 
land vulnerability to sediment loss, and (2) 
evaluate if rainfall characteristics alter the 

degree of agreement between the simulated 
sediment yield and SVI classification.

Materials and Methods
Study Areas. Four different Conservation 
Effects Assessment Project (CEAP) water-
sheds (Moriasi et al. 2020) were selected 
for studying a wide range of precipitation 
amount and intensity representing loca-
tions both within and outside of the Upper 
Mississippi and Ohio-Tennessee River basins 
where the SVI was developed (figure 1). 
These watersheds include (1) Goodwater 
Creek Experimental Watershed, Missouri 
(MOGC); (2) Beasley Lake, Mississippi 
(MSBL); (3) Maumee River Basin, Ohio 
(OHMM); and (4) WE38 watershed, 
Pennsylvania (PAWE). They were selected 
based on the availability of a calibrated SWAT 

or AnnAGNPS watershed model (table 1). 
Among the four watersheds, Maumee is the 
flattest with an area weighted average slope 
from all croplands of 1.0% while WE38 is 
the steepest with a 10.9% average slope. We 
used these watershed models with each of six 
precipitation data sets and compared vulner-
ability distributions as estimated by simulated 
sediment yields with the monthly character-
istics of the precipitation data sets (amounts, 
maximum 30-minute rainfall, and Universal 
Soil Loss Equation [USLE] erodibility fac-
tor). The following sections provide details 
on the models used, the precipitation charac-
teristics, and each stage of the methodology. 

The study relies on simulations of these 
watersheds using the SWAT and AnnAGNPS 
models and comparisons of SVI vulnerabil-
ity classification with model estimated runoff 

Figure 1
Location of watersheds used in this study including Goodwater Creek in Missouri (MOGC), 
Choptank in Maryland, Little River in Georgia, Beasley Lake in Mississippi (MSBL), WE38 in 
Pennsylvania (PAWE), and Maumee River Basin in Ohio (OHMM).
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and sediment fluxes. Precipitation data were 
substituted from among the six precipita-
tion data sets to evaluate the influence of 
precipitation on model estimated runoff 
and sediment fluxes and the corresponding 
vulnerability. Figure 2 illustrates the overall 
processes to evaluate precipitation impact 
on vulnerability classification. Calibrated 
watershed models from four of the locations 

(the description of the calibrated models can 
be found in the “Main Properties of Each 
Watershed Model” section) were used in 
determining sediment and runoff: a SWAT 
model in MOGC, OHMM, and PAWE, and 
an AnnAGNPS model in MSBL (table 1). 
Each of the six precipitation data sets were 
substituted into each of the four models 
to compare simulated precipitation-driven 

runoff and sediment losses for the six pre-
cipitation regimes under each watershed 
combination of slopes, soils, and land man-
agement conditions.

Precipitation Characteristics. Because 
rainfall is a driving force of soil erosion, it 
is important to consider regions where 
rainfall characteristics differ from those in 
the Upper Mississippi and Ohio-Tennessee 
River basin for which the SVI was devel-
oped. Precipitation characteristics for six 
CEAP watersheds including the four already 
mentioned, the Choptank River watershed 
in Maryland, and the Little River in Georgia 
(figure 1) were summarized from 1985 to 
2014 using a precipitation gage within the 
watershed or a nearby gage if the watershed 
had no station or limited precipitation data. 
The six precipitation data sets from Missouri 
(MO_pcp), Mississippi (MS_pcp), Ohio 
(OH_pcp), Pennsylvania (PA_pcp), Maryland 
(MD_pcp), and Georgia (GA_pcp) show 
distinct differences in precipitation amount 
and intensity as shown in figures 3 and 4, 
and supplementary table S1. Average annual 
precipitation ranged from 940 mm to 1,293 
mm, with the greater amounts for MS_pcp 
and GA_pcp and lowest for OH_pcp. Both 
MS_pcp and GA_pcp have the greatest win-
ter precipitation (December to February) 
and up to 60 mm difference between the 
wettest and driest months. Average monthly 
precipitation in OH_pcp and MO_pcp show 
a bell shape distribution (low in winter, high 
in spring and early summer) (figure 3) and 
about 40 mm difference between the wettest 
and driest months. In MD_pcp, precipitation 
is more evenly distributed throughout the 
year with a maximum monthly difference of 
30 mm.

RAINHHMX parameter, representing 
the most extreme 30-minute rainfall inten-
sity over multiple years, is used in SWAT to 
calculate the maximum half-hour rainfall of 
an event that generates runoff, which is in 
turn used to calculate the peak runoff rate 
and the corresponding soil loss (Neitsch et 

Table 1
Area weighted average slope, K-factor, and major hydrological soil group from watersheds of SWAT and AnnAGNPS models used in this study.

    Major    
  Weighted Weighted Hydrologic  Number of 
  average average Soil Hydrological croplands’
Location Area (km2)	 %	slope	 K-factor	 Group	 model	used	 HRUs/fields

Goodwater Creek watershed (MOGC) 73 1.5 0.29 D SWAT  160
Beasley Lake watershed (MSBL) 6 1.9 0.33 D AnnAGNPS  498
Maumee River Basin (OHMM) 16,200 1 0.16 C SWAT  2,889
WE38 watershed (PAWE) 7 10.9 0.28 C SWAT  7,197

Figure 2
Flowchart for impact assessment study of precipitation characteristics on Soil Vulnerability 
Index classification using the Soil and Water Assessment Tool (SWAT) and Annualized Agricul-
tural Nonpoint Source (AnnAGNPS) model in the four watersheds in this study.
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al. 2011). RAINHHMX was obtained from 
the SWAT weather database. This parame-
ter was used in this study as an indicator of 
rainfall intensity for each of the six precipita-
tion data sets. RAINHHMX is greatest and 
nearly equal for each of GA_pcp (in May), 
MO_pcp (in June), and MS_pcp (in July) at 
approximately 60 mm (figure 4). The overall 
maximum for the other three watersheds is 
about half this amount. The January maxi-
mum 30-minute precipitation for GA_pcp 
and MS_pcp is nearly three times greater 
compared to all other watersheds. These 
differences in precipitation amount, timing, 
and RAINHHMX would likely impact sed-
iment yield and nutrient runoff and would 
be expected to impact the absolute soil losses 
and the vulnerability of the site.

A parameter that combines different rain-
fall characteristics (i.e., amount, intensity, 
energy, and seasonality) is needed to under-
stand the overall impact of precipitation 
among the various watersheds. The Revised 
Universal Soil Loss Equation 2 (RUSLE2) 
rainfall erosivity factor (R-factor) was chosen 
for this project, as obtained from the RUSLE2 
database, which used data from 1960 to 
1999 (USDA ARS 2008). Rainfall erosivity 
combines rainfall kinetic energy (E) and its 
maximum 30-minute intensity (I30) for each 
individual storm to describe the effect of rain-
fall on sheet and rill erosion (Renard 1997; 
Wischmeier and Smith 1978). The R-factor 
accumulates the rainfall erosivity of individ-
ual rainstorm events over a year and averages 
them over multiple years (Abdulkadir et al. 
2016; Petkovšek and Mikoš 2004). Figure 5 
shows the cumulative R-factors by month for 
the six precipitation data sets included in this 
study. Note that there is a clear difference in 
R-factors among watersheds. 

Soil Vulnerability Index Vulnerability 
Classification. The SVI includes several 
components, one of them being the run-
off component, which quantifies sediment 
and nutrient loss by surface runoff. This is 
the component we are evaluating in this 
study. The SVI developers used the APEX 
field-scale model to simulate edge-of-field 
sediment and nutrient losses resulting from 
surface runoff and leaching from croplands 
managed without conservation practices. 
The developers expressed soil vulnerabil-
ity as one of four different classes. The SVI 
developers identified three thresholds of 
average annual soil loss that corresponded 
with the vulnerability classes: 4.5 t ha–1, 11.2 

t ha–1, and 17.9 t ha–1 (USDA NRCS 2019). 
Areas with average annual soil loss values less 
than 4.5 t ha–1 represented about 70% of the 
cropland areas for all conditions, including 
years with high precipitation (USDA NRCS 
2012) and were assigned a Low vulnerabil-
ity. The smallest simulated soil loss value for 

National Resources Inventory points classi-
fied as Highly Erodible Land (HEL) was 17.9 
t ha–1; this value became the threshold for 
the High vulnerability class. The Moderate 
and Moderately High vulnerabilities were 
assigned based on the midpoint value of 11.2 
t ha–1 (i.e., 4.5 to 11.2 t ha–1 as Moderate 

Figure 3
Thirty-year average monthly precipitation from gage data (1985 to 2014) in Missouri (MO_pcp), 
Maryland (MD_pcp), Georgia (GA_pcp), Mississippi (MS_pcp), Pennsylvania (PA_pcp), and Ohio 
(OH_pcp).
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Figure 4
Monthly maximum 30-minute precipitation from Soil and Water Assessment Tool (SWAT) weath-
er generator for the Missouri (MO_pcp), Maryland (MD_pcp), Georgia (GA_pcp), Mississippi 
(MS_pcp), Pennsylvania (PA_pcp), and Ohio (OH_pcp) data sets.
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and 11.2 to 17.9 t ha–1 as Moderately High). 
Additional information on assigning vulner-
abilities to combinations of hydrologic soil 
group, slope, and the soil erodibility K-factor 
can be found in Thompson et al. (2020).

Main Properties of Each Watershed 
Model. The Goodwater Creek Experimental 
Watershed, Missouri, is dominated by clay-
pan soils (Baffaut et al. 2015). The SWAT 
model (table 1) was calibrated and vali-
dated on a daily time step for stream flow 
and a monthly time step for loads of atra-
zine, sediment, and dissolved phosphorus (P) 
from 1993 to 2010 (Baffaut et al. 2015). The 
WE38 Watershed, Pennsylvania, was simu-
lated using the SWAT model. The model was 
corroborated with observed stream flow at a 
daily time step, with long-term cumulative 
and event-based P loads, and with soil mois-
ture and runoff frequency from hillslopes 
(Collick et al. 2015, 2016). Runoff and sed-
iment and pollution transport processes in 
the Maumee River Basin in western Ohio 
were simulated and account for subsurface 
drainage. Among the four models used in this 
study, the Maumee model is the only model 
that has artificial subsurface drainage. The 
model was previously calibrated at the daily 
time step for the period 1980 to 2020. The 
simulations were validated with observed 
monthly stream flows and fluxes of sedi-
ments, nitrogen (N) (N, nitrate N, and total 
N), and P (P, dissolved reactive P, and total P) 
at multiple flow gaging locations within the 

watershed. Further details about the model 
development and validation are provided in 
Gildow et al. (2016), Martin et al. (2021), and 
Scavia et al. (2017). The AnnAGNPS model 
for the Beasley Lake, Mississippi (Yasarer et 
al. 2020), was validated with streamflow data 
at the event scale at two locations from 2000 
to 2002. Additional details about the model 
setup and results can be found in Yasarer et 
al. (2020). 

Model Adjustment for the No-Practice 
Scenario. Since the SVI was developed 
based on no conservation practices, the cali-
brated SWAT and AnnAGNPS models were 
adjusted to represent the “no-practice” sce-
nario following the method outlined in the 
CEAP report (USDA NRCS 2012). The con-
version to the no-practice scenario included 
adding tillage operations when Soil Tillage 
Intensity Rating (STIR) <100 but assumed 
that all additional tillage would take place 
in the spring, before planting. Among these 
watersheds, only the OHMM has fall tillage 
due to the watershed management practices. 
This typical fall tillage was retained for the 
no-practice scenario. The USLE Practice 
factor (P-factor) was set equal to 1 (e.g., no 
credit for contouring), and the watershed 
cropland soil condition was changed to poor. 
It should be noted that the SWAT model 
used Modified Universal Soil Loss Equation 
(MUSLE) and AnnAGNPS used RUSLE2; 
both equations use the P-factor. These 
changes were accomplished by adjusting the 

NRCS runoff curve number (Kent 1973) of 
all cropland to poor hydrologic condition 
according to each land unit’s hydrologic soil 
group of a model, based on recommenda-
tions by Cronshey (1986) and adjusting the 
management to the no-practice scenario, as 
described in supplementary table S2. The 
adjustments were made at the field level in 
AnnAGNPS model, while the adjustments 
of the SWAT models were made at the 
Hydrologic Response Units (HRUs) level, 
which represent a combination of unique 
land cover, slope, and soil characteristics 
within a subbasin. According to the USDA 
NRCS (2012) guideline, no modification is 
needed for the model’s subsurface drainage 
in the “no-practice” scenario. 

Model Runs and Model Results 
Classification. To simulate the different pre-
cipitation conditions, the models were run 
using the daily historical precipitation data 
from each region. The monthly precipita-
tion parameters in the weather generator 
file, taken from the SWAT database, were 
changed to that of the corresponding region. 
Those included the parameters used to gen-
erate missing precipitation data if any and, 
more importantly, the precipitation inten-
sity as described by the monthly maximum 
30-minute precipitation used for calculating 
the peak runoff rate, which is used to esti-
mate sediment yield in SWAT. 

The SVI vulnerability was calculated for 
each HRU/field based on its specific soil and 
slope characteristics. Average annual sediment 
yield for each HRU/field was estimated by 
the model. The APEX sediment yield used as 
the basis for SVI development was calculated 
at the edge-of-field, and the sediment yield 
output from APEX is comparable to the field 
sediment yield calculated by the AnnAGNPS 
model. The SVI sediment thresholds were 
used to dynamically categorize HRU vul-
nerability independent from soil and slope 
characteristics. However, the SWAT HRU 
and subbasin framework do not allow direct 
transfer between HRU and edge-of-field 
results because HRU results represent con-
tributions to the stream and include the 
effects of the sediment routing processes that 
may occur between the field and the stream 
(Neitsch et al. 2011). Therefore, the SWAT-
simulated sediment yield thresholds defining 
each vulnerability class were revised using 
the decision tree method (Xia et al. 2008) to 
provide meaningful comparison of SVI classi-
fication with vulnerability classification based 

Figure 5
Cumulative rainfall erosivity R-factor from RUSLE 2 for the Missouri (MO_pcp), Maryland (MD_
pcp), Georgia (GA_pcp), Mississippi (MS_pcp), Pennsylvania (PA_pcp), and Ohio (OH_pcp) 
data sets.
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on SWAT simulations (figure 2). Specifically, 
the new thresholds were defined to match 
as closely as possible the classification of an 
HRU based on sediment yield output from 
SWAT, with the classification of that HRU 
based on the SVI criteria. By calculating 
threshold values by matching model-based 
results with SVI calculations, we removed the 
influence of climate, global model parame-
ters, and to some extent of management on 
vulnerability classification. Soil properties 
are considered by SVI, and this study tested 
whether when we remove the influence of 
management and climate, we arrive at similar 
vulnerability classifications. 

For each of the SWAT models, the pre-
cipitation data set utilized for the model 
calibration was used as input to the model 
to determine the sediment thresholds for 
that location. The decision tree uses a flow-
chart-like structure that starts from the root 
node, and branches extending to internal 
nodes, and end at a leaf node (supplemen-
tary figure S1). The paths from root node to 
leaf nodes represent decision rules used to 
divide data sets into various predefined classes. 
Sediment yield and SVI vulnerability class 
of the HRUs were used to split data points 
at the root node and at subsequent internal 
nodes into two or more categories or “bins” 
that best separate the target class values. The 
decision to split at each node is made based 
on the degree of “purity,” which is character-
ized by an index that calculates the probability 
of a specific data point to be classified incor-
rectly when selected at random. When a node 
is pure, all the contained elements in the node 
have the same class. The splitting process 
continues until predetermined homogeneity 
of the leaf node or stopping criteria are met 
(Song and Ying 2015; Yu et al. 2010). In this 
study, the thresholds were calculated using a 
python program and the machine learning 
package Scikit-learn (Pedregosa et al. 2011), 
using the Gini index (one of the most widely 
used tests for decision trees) to measure impu-
rity (Kim 2016). The Gini impurity index is 
calculated by summing the probability of each 
item being chosen multiplied by the proba-
bility of a misclassification of that item (Kim 
2016; Kumar 2013). Once sediment yields 
and SVI classification based on soil and slope 
are known for each HRU, the decision tree 
determines the optimal sediment yield cut-off 
value for each SVI class so that within that 
range of sediment yield, this cut-off value 
maximizes the number of HRUs with the 

same SVI classification and minimizes mix-
ing the number of HRUs of different classes 
(impurity). After determining the thresholds 
for vulnerability for each of the calibrated 
models, the six precipitation data sets were 
substituted among the models to evaluate the 
influence of precipitation on matching SVI 
vulnerability classifications with those identi-
fied using SWAT or AnnAGNPS.

Statistical Analysis. The precipitation 
characteristics, SVI vulnerability classifica-
tion, and HRUs/fields classifications based 
on the SWAT and AnnAGNPS models’ 
results were statistically analyzed. Results 
were used to determine if there were sta-
tistical differences in monthly precipitation 
characteristics among watersheds, and 
statistical differences in soil vulnerability clas-
sification when precipitation patterns from 
the six watersheds were substituted into the 
SWAT/AnnAGNPS models. Significant dif-
ferences in precipitation characteristics were 
then compared to significant differences in 
model simulated sediment loss.

The statistical test selected to assess signifi-
cant differences in vulnerability classification 
was the Cohen’s Kappa (Viera and Garrett 
2005; McHugh 2012). A Kappa statistic 
quantifies the similarity between two data 
sets on a scale from –1 (total dissimilarity) 
through 0 (no similarity) to 1 (perfect agree-
ment) (Viera and Garrett 2005; McHugh 
2012; Jayasinghe and Kumar 2019). For 
each SWAT and AnnAGNPS model, Kappa 
coefficients were calculated between results 
obtained with each pair of precipitation 
inputs. In this study, for each SWAT or 
AnnAGNPS model, the Kappa values were 
calculated for the different sets of HRUs/
fields vulnerability classification based on 
precipitation inputs. For example, in the 
SWAT model for WE38, there are 10,000 
crop-HRUs. When this model is run with 
each of the six precipitation data sets, each of 
these HRUs will have its own vulnerability 
based on its sediment yield output, thus cre-
ating six data sets with 10,000 vulnerability 
values in each. Each data set is then compared 
to each of the five others using the Kappa 
coefficient to determine if these two data sets 
are similar or dissimilar not by chance. This 
helps to separate the results into multiple 
groups and determine if precipitation param-
eters affect these grouping. Cohen suggested 
interpreting the Kappa result as follows: val-
ues ≤0 as less than chance agreement, 0.01 
to 0.20 as slight, 0.21 to 0.40 as fair, 0.41 to 

0.60 as moderate, 0.61 to 0.80 as substantial, 
and 0.81 to 1.00 as almost perfect agreement 
(Viera and Garrett 2005; McHugh 2012).

Since the R-factor and maximum 
30-minute precipitation were available only 
as monthly average values, we used monthly 
average precipitation amount as well in order 
to have consistent sample sizes for all pre-
cipitation characteristics. Viera and Garrett 
(2005) noted that the sample sizes for Kappa 
should consist of more than 30 compari-
sons. Since precipitation characteristics have 
a sample size of 12, the statistical t-test was 
applied. De Winter (2013) stated that a paired 
t-test is feasible with extremely small sample 
size, which can be as small as 2. 

Results and Discussion
Precipitation Patterns. Precipitation amount 
t-test values highlight the difference of 
OH_pcp amount compared with the 
other watersheds (supplementary table S3). 
Additionally, rainfall intensity student t-test 
(supplementary table S4) indicated that 
GA_pcp and MS_pcp intensity had similar 
characteristics, and MO_pcp, MD_pcp, and 
PA_pcp could be grouped together, while 
OH_pcp was alone in a separate group. From 
figure 5 and table 2, the R-factor in these 
watersheds can be divided into three distinct 
groups. The group with greatest R-factor was 
MS_pcp and GA_pcp; next was MO_pcp 
and MD_pcp; and lastly PA_pcp and OH_
pcp. Even though annual precipitation values 
of these watersheds were within 30% of each 
other, annual R-factors from GA_pcp and 
MS_pcp were nearly double those of MO_
pcp and MD_pcp. The PA_pcp amount was 
greater than the amount of MO_pcp, but 
the intensity of PA_pcp was much lower, 
resulting in an overall lower annual R-factor. 
Based on the three parameters considered 
(amount, intensity, and R-factor), precip-
itation characteristics were moderately to 
substantially similar in Mississippi and 
Georgia. They were fairly similar in Missouri 
and Maryland for precipitation intensity and 
R-factor, but only slightly similar for pre-
cipitation amount. Ohio stood apart from 
other locations in terms of monthly precip-
itation amount and intensity. Pennsylvania 
precipitation was unique in that its grouping 
with other locations depended on the pre-
cipitation parameter considered: Maryland 
for precipitation amount, Missouri and 
Maryland for precipitation intensity, and 
Ohio for R-factor.
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Vulnerability Classification in Goodwater 
Creek, Missouri, Model. Figure 6 shows the 
number of HRUs in each vulnerability class 
based on the sediment yield outputs of the 
MOGC SWAT model with precipitation 
from each of the watersheds as well as with 
the SVI. Figure 6 shows that the SVI classifi-
cation was in agreement with the classification 
obtained from model results with MO_pcp. 
Both figures 6 and 7 illustrate the influence of 
precipitation on sediment loss. Figure 7 shows 
the distributions of simulated sediment yield 
for MOGC using the precipitation charac-
teristics for each of the six watersheds. Based 
on sediment thresholds, the amount of HRU 
in each vulnerability class for MO_pcp was 
the same as the distribution based on the SVI 
criteria. Both indicated that 77.5% of HRUs 
within the watershed were classified as hav-
ing Moderate vulnerability to runoff and only 
2.5% of the HRUs were highly vulnerable. 
When MD_pcp precipitation was substi-
tuted there was no shift in SVI classification 
of the HRUs. Note that the annual precipi-
tation of MD_pcp is 17% (+167 mm) greater 
than MO_pcp; however, the rainfall intensity 
of MD_pcp is lower compared to that of 
MO_pcp, especially from March to June, such 
that the annual R-factor for MO_pcp is 9% 
greater than MD_pcp.

When considering precipitation from 
a region with higher rainfall amount and 
intensity such as MS_pcp or GA_pcp, 
there is a clear increase in vulnerability of 
the HRUs (figure 7). Using the MS_pcp 
in the MOGC SWAT model, 76% of the 
HRUs were classified as having higher risk 
of increased sediment yield output com-
pared with MO_pcp (table 3). There were 
large increases in the number of HRUs in 
the Moderately High (+92 HRUs) and 
High class (+30 HRUs). The average annual 
HRU sediment yields increased by 68% 
with GA_pcp, and more than doubled with 
MS_pcp compared with that from MO_pcp. 
The shift in vulnerability class of the HRUs 
showed a similar trend as the precipitation 
trend. The annual MS_pcp is the greatest 
among the simulated watersheds (+29% 
compared to MO) and annual GA_pcp is 
21% greater than MO_pcp. Precipitation 
during the nongrowing season (October to 
March) from MS_pcp and GA_pcp is 88% 
and 66% greater than MO_pcp, respectively. 
In addition, the maximum 30-minute pre-
cipitation during the nongrowing season in 
MS_pcp and GA_pcp is about 50% greater 

than in MO_pcp. Greater amount and inten-
sity of precipitation during the nongrowing 
season led to greater sediment loss since 
there is limited soil cover during this season 
(Ouyang et al. 2010). Under GA_pcp data, 
the change in class was similar in direction 
with MSBL but with a lesser magnitude. 
This result was expected as annual GA_pcp 
is less than annual MS_pcp, and less during 
the nongrowing season at 603 mm compared 
with 687 mm.

In contrast, the results obtained with PA_
pcp and OH_pcp showed that the assigned 
vulnerability of HRUs in the MOGC water-
shed were reduced with most of the HRUs 

in Low or Moderate class. Even though 
annual PA_pcp is greater, it has much lower 
intensity compared with MO_pcp. Based 
on OH_pcp precipitation, there was a 78% 
reduction in the number of HRUs classified 
as Moderately High or High, and 20 HRUs 
shifted to Low vulnerability. Not only does 
OH_pcp have the lowest annual precipita-
tion but it also has only one month where 
the maximum 30-minute rainfall depth 
exceeds 30 mm, i.e., August, when crop-
land maximum vegetative cover is expected. 
Although this maximum 30-minute pre-
cipitation is similar to both MD_pcp and 
PA_pcp, both of those sites have at least three 

Table 2
The R-factor t-test for six precipitation patterns in this study (vermilion color means significant 
difference between two data sets with a p-value less than 0.05).

 MO_pcp MD_pcp GA_pcp MS_pcp PA_pcp OH_pcp

MO_pcp 1.00          
MD_pcp 0.36 1.00        
GA_pcp <0.01 <0.01 1.00      
MS_pcp <0.01 <0.01 0.51 1.00    
PA_pcp <0.01 <0.01 <0.01 <0.01 1.00  
OH_pcp <0.01 <0.01 <0.01 <0.01 0.64 1.00

Figure 6
Cropland runoff the Hydrologic Response Units (HRU) vulnerability based on Soil Vulnerabil-
ity Index (SVI) criteria and simulations using the Missouri Goodwater Creek Soil and Water 
Assessment Tool (SWAT) model. Classifications are based on SVI soil and slope criteria using 
HRU properties in the SWAT model, and HRU sediment yields extracted from SWAT output with 
weather from MO_pcp, MD_pcp, GA_pcp, MS_pcp, PA_pcp, and OH_pcp, classified using the 
thresholds identified with the decision tree method (0.8, 4.6, and 10.3 t ha–1).
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consecutive months with that level of rain-
fall intensity. From these results and table 3, 
we can distinguish three groupings based on 
precipitation resulting in different levels of 
soil vulnerability: GA_pcp and MS_pcp in 

one group; MD_pcp, MO_pcp, and PA_pcp 
in a second one; and OH_pcp by itself. The 
greater the Kappa agreement between two 
scenarios, the more similar were the model 
sediment results based on the precipitation 

inputs. When there is less similarity between 
two scenarios, the differences in precipita-
tion inputs resulted in statistically different 
SVI vulnerability classifications. The number 
of HRUs in each vulnerability class for PA_
pcp are closer to the MO_pcp and MD_pcp 
numbers than they are from the OH_pcp 
numbers. However, only with PA_pcp and 
OH_pcp precipitations are there low vul-
nerability classes in this watershed. These 
groups mirror the groups of R-factors and 
30-minute maximum rainfall for the six pre-
cipitation data sets, and indicate that rainfall 
amount, intensity, and timing have an impact 
on the vulnerability classification of the soil.

Vulnerability Classification in Beasley 
Lake, Mississippi, Model. Figure 8 and sup-
plementary figure S2 show how vulnerability 
classification in the Beasley Lake watershed 
changes as a function of the precipitation 
input to the AGNPS model. Figure 8 for 
MSBL shows that there was 55% of agree-
ment between the SVI classification and the 
classification obtained from AGNPS model 
results with MS_pcp. While the classification 
discrepancies were in both directions, the 
SVI classification was lower than the model 
classification more frequently. The SVI classi-
fication based on soil and slope assigned Low 
and Moderate vulnerability to the major-
ity of the fields in the Beasley Lake (68%), 
Moderately High vulnerability to 23% of the 
HRUs, and High vulnerability to all others 
(less than 10%). The precipitation patterns 
that produced results in closest agreement 
with the SVI classification were those from 
MS_pcp and GA_pcp, for which both the 
annual and April through July precipitation 
were greatest compared to all other water-
sheds. However, there were only one-fourth 
as many HRUs classified in the High vulner-
ability class with both GA_pcp and MS_pcp 
compared to the SVI classification. Results 
based on precipitation from the other regions 
all led to even greater reductions in the num-
ber of fields in the High and Moderately 
High vulnerability classes. Overall, compared 
to model sediment yield outputs, it appears 
that SVI is overestimating vulnerability when 
slope is minimal, even when rainfall and 
R-values are greater. The results from this 
model were consistent with those from the 
MOGC SWAT model where higher precipi-
tation amount and intensity resulted in more 
areas assigned to the Moderately High and 
High vulnerability classes. 

Table 3
Kappa coefficient when assessing the effect of precipitation on Missouri Goodwater Creek 
(MOGC) model-based HRU vulnerability. White indicates values ≤0 show no agreement, vermil-
ion indicates values between 0.01 and 0.20 have none to slight agreement, yellow indicates 
values between 0.41 and 0.60 have moderate agreement, and green indicates values between 
0.81 and 1.00 have almost perfect agreement.

 MO_pcp MD_pcp GA_pcp MS_pcp PA_pcp OH_pcp

MO_pcp 1.00          
MD_pcp 1.00 1.00        
GA_pcp 0.18 0.18 1.00      
MS_pcp –0.06 –0.06 0.59 1.00    
PA_pcp 0.90 0.90 0.14 –0.09 1.00  
OH_pcp –0.04 –0.04 –0.14 –0.13 0.12 1.00

Figure 7
Ranked Hydrologic Response Unit (HRU) sediment yield (t ha–1) for Goodwater Creek in Missouri 
(MOGC) model with precipitation characteristics from (1) Goodwater Creek Experimental Water-
shed, Missouri; (2) Choptank Watershed, Maryland; (3) Little River Experimental Watershed, 
Georgia; (4) Beasley Lake, Mississippi; (5) WE-38 Watershed, Pennsylvania; and (6) Maumee 
River Basin, Ohio weather.
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The Kappa values (table 4) indicate the 
degree of similarity of results among the sce-
narios based on the differing precipitation 
inputs. The values from MSBL model indi-
cated that the results can be separated into 
three groups similar to the MOGC model 
with MS_pcp and GA_pcp in the first group, 
MO_pcp, MD_pcp, and PA_pcp in the sec-
ond group, and OH_pcp in a separate group.

Vulnerability Classification in WE38, 
Pennsylvania, Model. Similarly, figure 9 
shows the soil classification and thresholds 
obtained with the WE38 SWAT model. 
Figure 9 shows 95% agreement between the 
SVI and the model derived classification, in 
large part because of the very high fraction 
of cropland on steep slopes, all classified in 
the High vulnerability class. For 125 out 
of the remaining 158 HRUs, SVI assigned 
a higher vulnerability class than the mod-
el-based classification. 

The overall shift in sediment yield with 
precipitation can be observed in supple-
mentary figure S3. As expected, the SWAT 
simulation using the PA_pcp precipitation 
resulted in the best agreement with the SVI 
classification based on soil characteristics. 
The MD_pcp and PA_pcp produced similar 
results in the PAWE. The OH_pcp, which 
has lower precipitation for both the growing 
and nongrowing seasons, produced a shift 
toward less vulnerable HRUs compared with 
the PA_pcp. The MO_pcp has lower annual 
precipitation than the PA_pcp and resulted 
in a shift toward lower soil vulnerability in 
the PAWE watershed than with the PA_pcp, 
in spite of a greater R-factor. This result 
is different from those obtained with the 
MOGC and MSBL models, perhaps due to 
the steeper average slope found in the PAWE 
model. As shown in table 1, PAWE has the 
steepest slope among the other watersheds 
examined in this study (weighted average 
slope is more than 10 times greater than any 
other). It is possible that for a steep water-
shed such as WEPA, rain intensity is less 
important than precipitation amount. Both 
MS_pcp and GA_pcp resulted in the greatest 
number of HRUs assigned to High vulner-
ability, likely for similar reasons of higher 
precipitation amount and intensity as noted 
for the AnnAGNPS MSBL model. Kappa 
values (table 5) showed similar patterns 
to those obtained with previous models; 
however, GA_pcp and MD_pcp showed 
substantial agreement. This can be linked to 
the similar annual precipitation amount of 

these two areas: 1,169 mm and 1,207 mm for 
MD_pcp and GA_pcp, respectively—about 
a 3% difference. 

Vulnerability Classification in Maumee 
Watershed, Ohio. For the OHMM SWAT 
model (figure 10 and supplementary figure 
S4), the SVI classification was most similar 
to that obtained with the OH_pcp precipita-
tion. Figure 10 shows high level of agreement 
(88%) in classification for the watershed’s 
cropland HRUs. For 549 of the misclassified 
864 HRUs (or 8% of the cropland HRUs), 
SVI assigned a lower vulnerability than the 

model-derived classification. However, when 
grouping together Low and Moderate, and 
Moderately High and High, the agreement 
increased to 96%.

Kappa values (table 6) showed moderate 
agreement between vulnerability classifica-
tion obtained with MO_pcp and OH_pcp. 
Since fall tillage is practiced in the OHMM 
region, the nongrowing season (October to 
March) precipitation had a greater impact 
on cropland sediment yield. The lowest 
nongrowing season precipitation is MO_
pcp at 363 mm, followed by OH_pcp at 397 

Figure 8
Cropland runoff field vulnerability based on Soil Vulnerability Index (SVI) criteria and simula-
tions using the Mississippi Beasley AnnAGNPS model. Classifications are based on SVI soil and 
slope criteria using field properties in the AnnAGNPS model, and sediment yields extracted 
from AnnAGNPS output with weather from MO_pcp, MD_pcp GA_pcp, MS_pcp, PA_pcp, and 
OH_pcp, classified using thresholds from SVI (4.5, 11.2, and 17.9 t ha–1).
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Table 4
Kappa coefficient when assessing the effect of precipitation on Mississippi Beasley Lake (MSBL) 
model-based Hydrologic Response Unit (HRU) vulnerability. Vermilion indicates values between 
0.01 and 0.20 have none to slight agreement, orange indicates values between 0.21 and 0.40 
have fair agreement, yellow indicates values between 0.41 and 0.60 have moderate agreement, 
and green indicates values between 0.81 and 1.00 have almost perfect agreement.

 MO_pcp MD_pcp GA_pcp MS_pcp PA_pcp OH_pcp

MO_pcp 1.00          
MD_pcp 0.93 1.00        
GA_pcp 0.35 0.33 1.00      
MS_pcp 0.26 0.24 0.86 1.00    
PA_pcp 0.86 0.84 0.25 0.17 1.00  
OH_pcp 0.32 0.35 0.05 0.04 0.42 1.00
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mm, while GA_pcp and MS_pcp have the 
greatest amounts at 603 mm and 687 mm, 
respectively. The R-factors of MO_pcp and 
MD_pcp are similar; however, nongrowing 
season MD_pcp is 34% greater than MO_
pcp. As a result, model-derived classification 
shows more vulnerability with the MD_pcp 
than with the MO_pcp (620 HRUs in High 
and Moderately High classes compared 
with 403 HRUs). Similarly, the R-factor of 
PA_pcp is lower than that of MO_pcp, but 

the nongrowing season precipitation is 23% 
greater. This difference resulted in a greater 
number of HRUs classified in the High 
vulnerability class in PA_pcp compared to 
MO_pcp (269 HRUs versus 248 HRUs). 
This suggests that timing of the precipita-
tion may play an important role in proper 
vulnerability classification, which is not 
included in SVI. Similarly, both GA_pcp 
and MS_pcp, which have greater annual 
and nongrowing season precipitation than 

OH_pcp and greater maximum monthly 
30-minute rainfall, resulted in the greatest 
number of HRUs considered as Highly vul-
nerable. Over half of the HRUs in the Low 
SVI classification shifted to the Moderate 
vulnerability class when using the GA_pcp 
or MS_pcp precipitation. A lesser amount 
was moved from the Moderately High to 
the High vulnerability class. 

Interaction of Site and Precipitation 
Characteristics on Vulnerability Classification 
and Conservation Needs. As different regions 
have their own set of characteristics influ-
encing the range of management practices 
controlling runoff, and sediment and nutri-
ent losses, an analysis of site characteristics 
impacting the interpretation of SVI is needed. 
In all the cases considered here, agreement 
between the SVI and the model-based clas-
sifications ranged from 55% to 100% of the 
cropland in each watershed. Lower agree-
ment was observed for the flatter MSBL 
and OHMM watersheds (55% and 88%, 
respectively). When there was a discrepancy, 
the results pointed to more frequent lower 
vulnerability ratings with SVI compared to 
the model-based classification. However, the 
largest discrepancy occurred between the 
Low and Moderate, with more HRU being 
classified as Low with SVI and Moderate 
with the model-based classification. When 
we grouped the Low and Moderate classes 
together and the Moderately High and 
High classes together, agreement for these 
two watersheds jumped to 80% and 96%, 
respectively. Thus, we can conclude that SVI 
is useful to classify vulnerability within a 
watershed or a region.

Vulnerability of HRU and fields and 
vulnerability distributions did shift up or 
down depending on the precipitation data 
set used to drive the model (figures 6, 8, 
9, and 10). This relationship was especially 
pronounced for the PAWE watershed as 
shown by the larger spacing of the sediment 
yield distribution curves for that watershed 
(supplementary figure S3) compared to the 
other watersheds (figure 7 and supplemen-
tary figures S2 and S4). The calculated Kappa 
values between vulnerability classifications 
obtained with different precipitation inputs 
for different slope ranges helped to iden-
tify the effect of slope on the agreement 
between SVI and model-based vulnerability 
classification (supplementary table S5 for the 
PAWE watershed). For all watersheds, the 
Kappa values decreased as slopes increased, 

Figure 9
Cropland runoff Hydrologic Response Unit (HRU) vulnerability based on Soil Vulnerability Index 
(SVI) criteria and simulations using the Pennsylvania WE38 SWAT model. Classifications are 
based on SVI soil and slope criteria using HRU properties in the SWAT model, and HRU sediment 
yields extracted from SWAT output with weather from MO_pcp, MD_pcp, GA_pcp, MS_pcp, 
PA_pcp, and OH_pcp, classified using the thresholds identified with decision tree method (3.3, 
10.9, and 18.6 t ha–1).
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Table 5
Kappa coefficient when assessing the effect of precipitation on Pennsylvania WE38 (PAWE) 
model-based Hydrologic Response Unit (HRU) vulnerability. Vermilion indicates values between 
0.01 and 0.20 have none to slight agreement, orange indicates values between 0.21 and 0.40 
have fair agreement, yellow indicates values between 0.41 and 0.60 have moderate agreement, 
blue indicates values between 0.61 and 0.80 have substantial agreement, and green indicates 
values between 0.81 and 1.00 have almost perfect agreement.

 MO_pcp MD_pcp GA_pcp MS_pcp PA_pcp OH_pcp

MO_pcp 1.00          
MD_pcp 0.74 1.00        
GA_pcp 0.47 0.70 1.00      
MS_pcp 0.30 0.49 0.77 1.00    
PA_pcp 0.90 0.84 0.55 0.37 1.00  
OH_pcp 0.45 0.25 0.16 0.12 0.37 1.00
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implying that the vulnerability classifica-
tions that correspond to two precipitation 
patterns diverged from each other as the 
slope increased. A possible interpretation is 
that precipitation characteristics have greater 
impact on the SVI classification when slopes 
are greater. 

The implication of this is that vulner-
ability in terms of risk to receiving waters 
is affected by the precipitation characteris-
tics of the site. A low vulnerability field in 
Ohio, as defined by SVI, does not carry the 
same risk of sediment loss as the same field 
in Mississippi. While this still allows vulner-
ability classification (as seen by the good 
agreement between the two methodologies), 
targeting of the most vulnerable areas for 
conservation efforts, and prioritizing conser-
vation dollars, the amount of conservation 
indicated by the SVI may not correspond 
to the amount of conservation needed to 
achieve a target level of sediment loss. 

This is not problematic if SVI is used 
locally or regionally. However, in addition 
to targeting and prioritization, another use 
of the SVI is to guide conservation needs 
at field or regional scale by comparison of 
cropland vulnerability and the corresponding 
conservation needs with conservation prac-
tices already implemented (NRCS 2021). 
The goal of these conservation practices is 
to minimize the transport of sediment and 
nutrient to the receiving streams. For losses 
by surface runoff, the guidance assumes 
ranges of soil loss for each vulnerabil-
ity class. Since the soil loss does vary with 
precipitation, it derives that accounting for 
the precipitation is necessary if a goal is to 
achieve a given amount of soil loss. When it 
comes to water quality, acceptable amounts 
of sediment and nutrients caused by land cul-
tivation and entering a water body (stream or 
a lake) are a function of the receiving water 
body characteristics, the beneficial uses of 
that water body (e.g., ecosystem sustenance, 
recreation, and water supply), the amount of 
cropland in the watershed, and other con-
tributions in the watershed. To address this, 
the US Environmental Protection Agency 
developed the concept of Total Maximum 
Daily Load so that watershed management 
plans and desired pollution abatements can 
be tailored to the watershed and water body 
characteristics. A vulnerability ranking may 
be a useful tool to inform these watershed 
management plans, but depending on the 
intended stream or lake water use, a low vul-

nerability ranking may not always imply that 
no conservation effort is needed. 

If SVI needs to infer an approximate 
risk of soil loss, these study results imply 
that it should include a precipitation term. 
Tables 3, 4, 5, and 6 show that the greatest 
Kappa values are consistently obtained for 
the following groups in each case: GA_pcp 
and MS_pcp together; MD_pcp, PA_pcp, 
and MO_pcp together; and OH_pcp on 
its own. These grouping are the closest to 

the grouping based on the t-test values 
for the maximum 30-minute rainfall (I30, 
supplementary table S4). This is not sur-
prising as soil loss is sensitive to peak runoff 
rate, which varies with I30, as indicated 
by the USLE (Tibebe and Bewket 2011). 
However, nutrients and especially dissolved 
nutrients are more sensitive to runoff vol-
ume, and therefore to total rainfall volume 
(Wang et al. 2018). Since SVI’s goal is to 
address nutrient losses as well, a precipita-

Figure 10
Cropland runoff Hydrologic Response Unit (HRU) vulnerability based on Soil Vulnerability Index 
(SVI) criteria and simulations using the Ohio Maumee SWAT model. Classifications are based on 
SVI soil and slope criteria using HRU properties in the SWAT model, and HRU sediment yields 
extracted from SWAT output with weather from MO_pcp, MD_pcp GA_pcp, MS_pcp, PA_pcp, 
and OH_pcp, classified using the thresholds identified with decision tree method (5.8, 15.6, 
and 25.4 t ha–1).
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Table 6
Kappa coefficient when assessing the effect of precipitation on Ohio Maumee (OHMM) mod-
el-based Hydrologic Response Unit (HRU) vulnerability. Vermilion indicates values between 
0.01 and 0.20 have none to slight agreement, orange indicates values between 0.21 and 0.40 
have fair agreement, yellow indicates values between 0.41 and 0.60 have moderate agreement, 
blue indicates values between 0.61 and 0.80 have substantial agreement, and green indicates 
values between 0.81 and 1.00 have almost perfect agreement.

 MO_pcp MD_pcp GA_pcp MS_pcp PA_pcp OH_pcp

MO_pcp 1.00          
MD_pcp 0.73 1.00        
GA_pcp 0.39 0.62 1.00      
MS_pcp 0.27 0.47 0.84 1.00    
PA_pcp 0.81 0.92 0.54 0.41 1.00  
OH_pcp 0.72 0.47 0.20 0.12 0.54 1.00
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tion parameter that relates to both rainfall 
amount and rainfall intensity, such as the 
R-factor, seems a good choice. It also has 
the advantage of being already calculated 
and part of the metrics commonly used by 
conservationists. 

Summary and Conclusions
The SVI was developed by the USDA NRCS 
to rapidly classify cropland vulnerability to loss 
of sediment and nutrient by runoff and leach-
ing into four categorical classes, which are 
Low, Moderate, Moderately High, and High. 
The SVI index uses soil and slope characteris-
tics of the cropland for its classification process 
but does not use precipitation characteristics. 
In this study, the soil runoff vulnerability was 
compared between SVI criteria and model 
simulated sediment yields from four calibrated 
watershed models using precipitation inputs 
from six different regions, which had distinct 
differences in precipitation characteristics, 
including amount, intensity, seasonal pattern, 
and R-factor. The output from the models 
with the six precipitation data sets were used 
to study the impact of precipitation on the 
soil vulnerability classification. 

The SVI and the model-based classi-
fications agreed for 55% to 100% of the 
watersheds’ subunits (supplementary tables S6, 
S7, S8, and S9), confirming that SVI is a useful 
vulnerability assessment tool that is consistent 
with modeling technologies. However, the 
range of sediment yields within each vul-
nerability class varied among the watersheds, 
which implies caution when associating an 
approximate range of soil loss with each vul-
nerability class when one is not familiar with 
interpreting SVI within a specific region. 

Higher (or lower) precipitation amount 
and/or intensity than those of the site’s pre-
cipitation resulted in an increase (or decrease) 
in risk of soil loss by runoff. Other factors, 
such as the slope of the agricultural fields and 
the seasonality of the precipitation also affect 
this risk. As anticipated, the magnitude of the 
change with precipitation was most linked to 
the changes in maximum 30-minute rainfall 
between the regions. This makes this param-
eter or perhaps the more frequently used 
R-factor good candidates to adjust the SVI to 
account for the influence of precipitation on 
expected sediment loss. 

Overall, the results from this study indicated 
that there is a need to add a precipitation char-
acteristics modifier to the SVI classification 
system, similar to the existing organic matter 

and drainage modifiers. Given the low num-
ber of sites used in this study, further work that 
includes additional data sets that span a wider 
range of precipitation characteristics will be 
included in proposing modifiers to adjust the 
SVI based on precipitation characteristics.
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