TY - JOUR T1 - Streambank erosion in two watersheds of the Central Claypan Region of Missouri, United States JF - Journal of Soil and Water Conservation SP - 249 LP - 263 DO - 10.2489/jswc.67.4.249 VL - 67 IS - 4 AU - C.D. Willett AU - R.N. Lerch AU - R.C. Schultz AU - S.A. Berges AU - R.D. Peacher AU - T.M. Isenhart Y1 - 2012/07/01 UR - http://www.jswconline.org/content/67/4/249.abstract N2 - This study was undertaken to assess the importance of streambank erosion to the total in-stream sediment of two agricultural watersheds within the Central Claypan Areas. The objective of this research was to determine the effect of stream order, adjacent land use, and season on streambank erosion rates. Thirty-four study sites were established in 2007 and 2008 within Crooked and Otter Creek watersheds, two claypan watersheds located in northeastern Missouri. At each site, field assessments of severely to very severely eroding bank length were determined along 300 to 400 m (984 to 1,312 ft) stream reaches. A factorial experimental design was implemented with four land uses (crop, forest, pasture, and riparian forest), three seasons, and three stream orders (1st, 2nd, and 3rd). Each treatment was replicated three times for each stream order, except for the cropped 3rd order treatment as only one suitable treatment site could be found. Streambank erosion was measured using erosion pins, which were installed in randomly assigned plots that included at least 20% of the eroded bank length within each site. The effect of different seasons was assessed by measuring the length of the exposed pins three times per year (March, July, and November). The bulk density and carbon and nitrogen content of bank material were also determined. Sediment loss rates showed that season and the three-way interaction between season, land use, and stream order were highly significant. Erosion rates were consistently higher in the winter months than spring/summer and fall seasons; however, the significant three-way interaction precluded a simple interpretation of the seasonal effect. Soil nutrient concentration data showed that forest sites had significantly lower C and N concentrations than other land uses. At the watershed scale, bank sediment accounted for 79% to 96% of the total in-stream sediment and 21% to 24% of the total N exported from the study area. These results indicate that streambanks are the dominant source of sediment and a significant source of N in these streams. Therefore, improved management of riparian areas to decrease streambank erosion would result in significant water quality improvement in streams of the Central Claypan Areas in northeastern Missouri. ER -