Skip to main content

Advertisement

Log in

Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget

  • Published:
Ecosystems Aims and scope Submit manuscript

ABSTRACT

Because freshwater covers such a small fraction of the Earth’s surface area, inland freshwater ecosystems (particularly lakes, rivers, and reservoirs) have rarely been considered as potentially important quantitative components of the carbon cycle at either global or regional scales. By taking published estimates of gas exchange, sediment accumulation, and carbon transport for a variety of aquatic systems, we have constructed a budget for the role of inland water ecosystems in the global carbon cycle. Our analysis conservatively estimates that inland waters annually receive, from a combination of background and anthropogenically altered sources, on the order of 1.9 Pg C y−1 from the terrestrial landscape, of which about 0.2 is buried in aquatic sediments, at least 0.8 (possibly much more) is returned to the atmosphere as gas exchange while the remaining 0.9 Pg y−1 is delivered to the oceans, roughly equally as inorganic and organic carbon. Thus, roughly twice as much C enters inland aquatic systems from land as is exported from land to the sea. Over prolonged time net carbon fluxes in aquatic systems tend to be greater per unit area than in much of the surrounding land. Although their area is small, these freshwater aquatic systems can affect regional C balances. Further, the inclusion of inland, freshwater ecosystems provides useful insight about the storage, oxidation and transport of terrestrial C, and may warrant a revision of how the modern net C sink on land is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.

Similar content being viewed by others

REFERENCES

  • Aitkenhead JA, McDowell WH. 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem Cycles 14:127–38

    Article  CAS  Google Scholar 

  • Algesten G, Sobek S, Bergström AK, Ågren A, Tranvik LJ, Jansson M. 2003. The role of lakes for organic carbon cycling in the boreal zone. Global Change Biol 10:141–7

    Article  Google Scholar 

  • Algesten G, Wikner J, Sobek S, Tranvik LJ, Jansson M. 2004. Seasonal variation of CO2 saturation in the Gulf of Bothnia: Indications of marine net heterotrophy. Global Biogeochem Cycles 18(4), Art. no. GB4021

  • Bastviken D, Cole J, Pace M, Tranvik L. 2004. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18, Art. no. GB4009

  • Berner RA. 1993. Weathering and its effect on atmospheric CO2 over phanerozoic time. Chem Geol 107:373–4

    Article  Google Scholar 

  • Bertilsson S, Ramunas C, Cuadros-Hansson R, Graneli W, Wikner J, Tranvik L. 1999. Photochemically induced changes in bioavailable carbon and nitrogen pools in a boreal watershed. Aquat Microb Ecol 19:47–56

    Google Scholar 

  • Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D. 2004. Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochem Cycles 18(1), Art. no. GB1024

  • Bolin B. 1981. Carbon cycle modelling Scope Report no. 16, New York: Wiley

    Google Scholar 

  • Borges AV. 2005. Do we have enough pieces of the Jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3–27

    CAS  Google Scholar 

  • Cai WJ, Wang Y, Krest J, Moore WS. 2003. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochim Cosmochim Acta 67:631–7

    Article  CAS  Google Scholar 

  • Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer JR, Field CB, Gower ST, Hollinger DY, Hunt JE, Jackson RB, Running SW, Shaver GR, Steffen W, Trumbore SE, Valentini R, Bond BY. 2000. Carbon metabolism of the terrestrial biosphere: a multitechnique approach for improved understanding. Ecosystems 3:115–30

    Article  CAS  Google Scholar 

  • Caraco NF, Cole JJ. 2002. Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river. Ecol Appl 12:1496–509

    Article  Google Scholar 

  • Caraco NF, Cole JJ. 2004. When terrestrial organic matter is sent down the river: importance of allochthonous C inputs to the metabolism in lakes and rivers. In: Polis A, Power ME, Eds. Food webs at the landscape level. Chicago: University of Chicago Press. pp 301–16

  • Church TM. 1996. An underground route for the water cycle. Science 380:579–80

    CAS  Google Scholar 

  • Clair A, Ehrman JM. 1996. Variations in discharge and dissolved organic carbon and nitrogen export from terrestrial basins with changes in climate: a neural network approach. Limnol Oceanogr 41:921–27

    CAS  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–70

    Article  CAS  PubMed  Google Scholar 

  • Cole JJ, Caraco NF. 2001. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–10

    Article  CAS  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–73

    Article  Google Scholar 

  • Dai A, Trenberth KE. 2002. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3:660–87

    Article  Google Scholar 

  • Dean WE, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–8

    Article  Google Scholar 

  • Degens ET, Kempe S, Richey JE. 1991. Chapter 15, summary: biogeochemistry of major world rivers. In: Degens ET, Kempe S, Richey JE, Eds. Biogeochemistry of major world river. Scope 42, New York: Wiley, pp 323–44

  • del Giorgio PA, Peters RH. 1994. Patterns in planktonic PR ratios in lakes—influence of lake trophy and dissolved organic-carbon. Limnol Oceanogr 39:772–87

    Article  Google Scholar 

  • Dillon PJ, Molot LA. 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36:29–42

    Article  CAS  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr (in press)

  • Duarte CM, Middelburg JJ, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 1:173–80

    Google Scholar 

  • Duarte CM, Prairie YT. 2005. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8:862–70

    Article  CAS  Google Scholar 

  • Einsele G, Yan J, Hinderer M. 2001. Atmospheric carbon burial in modern lake basins and its significance for the global carbon budget. Global Planet Change 30:167–95

    Article  Google Scholar 

  • Evans CD, Monteith DT, Cooper DM. 2005. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ Pollut 137:55–71

    Article  PubMed  CAS  Google Scholar 

  • Fahey TJ, Siccama TG, Driscoll CT, Likens GE, Campbell J, Johnson CE, Battles JJ, Aber JD, Cole JJ, Fisk MC, Groffman PM, Hamburg SP, Holmes RT, Schwarz PA, Yanai RD. 2005. The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75(1):109–76

    Article  CAS  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, MacKenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–6

    Article  PubMed  CAS  Google Scholar 

  • Filippi ML, Talbot MR. 2005. The palaeolimnology of northern Lake Malawi over the last 25 ka based upon the elemental and stable isotopic composition of sedimentary organic matter. Q Sci Rev 24:1303–28

    Article  Google Scholar 

  • Foley JA, Prentice IC, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A. 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles 10:603–28

    Article  CAS  Google Scholar 

  • Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, DeLille B, Libert E, Theate JM. 1998. Carbon dioxide emission from European estuaries. Science 282:434–6

    Article  PubMed  CAS  Google Scholar 

  • Freeman C, Fenner N, Ostle NJ, Kang H, Dowrick DJ, Reynolds B, Lock MA, Sleep D, Hughes S, Hudson J. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430:195–8

    Article  PubMed  CAS  Google Scholar 

  • Gaillardet J, Dupre B, Louvat P, Allegre CJ. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  CAS  Google Scholar 

  • Hanson PC, Pollard AI, Bade DL, Predick K, Carpenter SR, Foley JA. 2004. A model of carbon evasion and sedimentation in temperate lakes. Global Change Biol 10:1285–98

    Google Scholar 

  • Harden JW, Sundquist ET, Stallard RF, Mark RK. 1992. Dynamics of soil carbon during deglaciation of the Laurentide ice-sheet. Science 258:1921–4

    Article  CAS  PubMed  Google Scholar 

  • Harrison JA, Caraco N, Seitzinger SP. 2005. Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles 19(4), Art. no. GB4S04

  • Hem JD. 1985. Study and interpretation of the chemical characteristics of natural water, 3rd edn. United States Geological Survey Water-Supply Paper 2254. p 263

  • Hollinger DY, Aber J, Dail B, Davidson EA, Goltz SM, Hughes H, Leclerc MY, Lee JT, Richardson AD, Rodrigues C, Scott NA, Achuatavarier D, Walsh J. 2004. Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biol 10:1689–706

    Article  Google Scholar 

  • Houghton RA. 2003. Why are estimates of the terrestrial carbon balance so different? Global Change Biol 9:500–9

    Article  Google Scholar 

  • Humborg C, Conley DJ, Rahm L, Wulff F, Cociasu A, Ittekkot V. 2000. Silicon retention in river basins: far reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29:45–50

    Article  Google Scholar 

  • IPCC. 2001. The carbon cycle and atmospheric carbon dioxide. In: IPCC, Climate Change 2001. Cambridge University Press, Cambridge. pp 183–37

  • Ittekkot V, Humborg C, Rahm L, Nguyen TA. 2004. Carbon-silicon interactions, chap 17. In: Melillo JM, Field CB, Moldan B, Eds. Scope 61. Interactions of the major biogeochemical cycles: Global change and human impacts, vol 357. Washington DC: Island Press. pp 311–22

  • IUCN. 2000. Vision for water and nature: a world strategy for conservation and sustainable management of water resources in the 21st century. Cambridge, UK: The World Conservation Union. 58 p

  • Janssens IA. 2003. The European carbon budget: a gap—response. Science 302:1681

    Article  CAS  Google Scholar 

  • Jones JB, Mulholland PJ. 1998. Carbon dioxide variation in a hardwood forest stream: an integrative measure of whole catchment soil respiration. Ecosystems 1:183–96

    Article  CAS  Google Scholar 

  • Jones TH, Thomspon LJ, Lawton JH, Bezemer TM, Bardgett RD, Blackburn TM, Bruce KD, Cannon PF, Hall GS, Hartley SE, Howson G, Jones CG, Kampichler C, Kandeler E, Ritchie DA. 1998. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280:441–3

    Article  PubMed  CAS  Google Scholar 

  • Jones JB, Stanley EH, Mulholland PJ. 2003. Long-term decline in carbon dioxide supersaturation in rivers across the contiguous United States. Geophys Res Lett 30(10), Art. no. 1348

    Google Scholar 

  • Kauppi PE, Posch M, Hanninen P, Henttonen HM, Ihalainen A, Lappalainen E, Starr M, Tamminen P. 1997. Carbon reservoirs in peatlands and forests in the boreal regions of Finland. Silva Fennica 31:13–25

    Google Scholar 

  • Kling GW, Kipphut GW, Miller MC. 1991. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251:298–301

    Article  CAS  PubMed  Google Scholar 

  • Kortelainen P, Pajunen H, Rantakari M, Saarnisto M. 2004. A large carbon pool and small sink in boreal Holocene lake sediments. Global Change Biol 10:1648–53

    Article  Google Scholar 

  • Kortelainen P, Rantakari M, Huttunen JT, Mattsson T, Alm J, Juutinen S, Larmola T, Silvola J, Martikainen PJ 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biol 12:1554–67

    Google Scholar 

  • Leopold LB, Wolman MG, Miller JP. 1964, 1992. Fluvial processes in geomorphology, 2nd edn. New York: Dover Publishers. 522 pp

  • Liski J, Westman CJ. 1997. Carbon storage in forest soil of Finland II size and regional patterns. Biogeochemistry 36:261–274

    Article  Google Scholar 

  • Ludwig W, Probst JL, Kempe S. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles 10:23–41

    Article  CAS  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G. 2003. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–12

    Article  CAS  Google Scholar 

  • Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IBT, Novo EMLM. 2004. Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology 10:530–44

    Article  Google Scholar 

  • Meybeck M. 1982. Carbon, nitrogen and phosphorus transported by world rivers. Am J Sci 282:401–50

    Article  CAS  Google Scholar 

  • Meybeck M. 1993. Riverine transport of atmospheric carbon: sources, global typology and budget. Water Air Soil Pollut 70:443–63

    Article  CAS  Google Scholar 

  • Molot LA, Dillon PJ. 1996. Storage of terrestrial carbon in lake sediments and evasion to the atmosphere. Global Biogeochem Cycles 10:483–92

    Article  CAS  Google Scholar 

  • Mulholland P, Elwood JW. 1982. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34:490–9

    CAS  Google Scholar 

  • Pacala SW, Hurtt GC, Baker D, Peylin P, Houghton RA, Birdsey RA, Heath L, Sundquist ET, Stallard RF, Ciais P, Moorcroft P, Caspersen JP, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon ME, Fan SM, Sarmiento JL, Goodale CL, Schimel D, Field CB. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science 292:2316–20

    Article  PubMed  CAS  Google Scholar 

  • Pace ML, Prairie YT. 2005. Respiration in lakes. In: del Giorgio PA, Williams PJ leB, Eds. Respiration in Aquatic systems. Oxford: Oxford University Press. pp 103–121

  • Parton WJ, Pulliam WM, Ojima DS. 1994. Application of the CENTURY model across the LTR network: parameterization and climate change simulations. Bull Ecol Soc Am 75:186–7

    Google Scholar 

  • Paterson MJ, Muir DCG, Rosenberg B, Fee EJ, Anema C, Franzlin W. 1998. Does lake size affect concentrations of atmospherically derived polychlorinated biphenyls in water, sediment, zooplankton and fish. Can J Fish Aquat Sci 55:544–53

    Article  CAS  Google Scholar 

  • Polis A, Power ME, Eds. 2004. Food webs at the landscape level. Chicago: University of Chicago Press

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG. 1982. Soil carbon pools and world life zones. Nature 298:156–9

    Article  CAS  Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA. 1993. Terrectrial ecosystem production—a process model-based on global satellite and surface data. Global Biogeochem Cycles 7:811–41

    Article  Google Scholar 

  • Prairie YT, Bird DF, Cole JJ. 2002. The Summer Metabolic Balance in the Epilimnion of Southeastern Quebec Lakes. Limnol Oceanogr 47:316–21

    Article  CAS  Google Scholar 

  • Raich JW, Schlesinger WH. 1992. The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser B Chem Phys Meteorol 44:81–99

    Article  Google Scholar 

  • Randerson JR, Chapin FS, Harden JW, Neff JC, Harmon ME. 2002. Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems. Ecol Appl 12:937–47

    Article  Google Scholar 

  • Rantakari M, Kortelainen P. 2005. Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Global Change Biol 11:1368–80

    Article  Google Scholar 

  • Raymond PA, Cole JJ. 2003. Increase in the export of Alkalinity from North America’s largest river. Science 301:88–91

    Article  PubMed  CAS  Google Scholar 

  • Revelle R, Suess HE. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27

    CAS  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–20

    Article  PubMed  CAS  Google Scholar 

  • Roehm, CL. 2005. Respiration in wetland ecosystems. In: del Giorgio PA, Williams PJ, le B, Eds. Respiration in Aquatic systems. Oxford: Oxford University Press. pp 83–102

  • Roulet NT. 2000. Peatlands, carbon storage, greenhouse gases, and the Kyoto protocol: prospects and significance for Canada. Wetlands 20:605–15

    Article  Google Scholar 

  • Sarmiento JL, Sundquist ET. 1993. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356:589–93

    Article  Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–72

    Article  PubMed  CAS  Google Scholar 

  • Schindler JE, Krabbenhoft DP. 1998. The hyporheic zone as a source of dissolved organic carbon and carbon gases to a temperate forested stream. Biogeochemistry 43:157–74

    Article  CAS  Google Scholar 

  • Schlesinger WH, Melack JM. 1981. Transport of organic carbon in the world’s rivers. Tellus 33:172–87

    Article  CAS  Google Scholar 

  • Schlesinger WH. 2005. Biogeochemistry. Boston: Elsevier Press. 702 pp

    Google Scholar 

  • Shibata H, Hiura T, Tanaka Y, Takagi K, Koike T. 2005. Carbon cycling and budget in a forested basin of southwestern Hokkaido, northern Japan. Ecol Res 20:325–31

    Article  Google Scholar 

  • Shiklomanov IA, Rodda JC. 2003. World water resources at the beginning of the twenty-first century, international hydrology series. Cambridge: Cambridge University Press. 423 pp

  • Siegenthaler U, Sarmiento JL. 1993. Atmospheric carbon dioxide and the ocean. Nature 365:119–25

    Article  CAS  Google Scholar 

  • Siemens J. 2003. The European carbon budget: A gap. Science 302:1681

    Article  PubMed  CAS  Google Scholar 

  • Simpkins WW, Parkin TB. 1993. Hydrology and redox geochemistry of CH4 in a late Wisconsonian till and loess sequence in central Iowa. Water Resources Res 29:3643–57

    Article  CAS  Google Scholar 

  • Slomp CP, Van Cappellen P. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86

    Article  CAS  Google Scholar 

  • Smith SV, Renwick WH, Buddemeier RW, Crossland CJ. 2001. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochem Cycles 15:697–707

    Article  CAS  Google Scholar 

  • Smith SV, Renwick WH, Bartley JD, Buddemeier RW. 2002. Distribution and significance of small, artificial water bodies across the United States landscape. Sci Total Environ 299:21–36

    Article  PubMed  CAS  Google Scholar 

  • Smith LC, MacDonald GM, Velichko AA, Beilman DW, Borisova OK, Frey KE, Kremenstski KV, Sheng Y. 2004. Siberian peatlands as a net carbon sink and global methane source since the early Holocene. Science 303:353–6

    Article  PubMed  CAS  Google Scholar 

  • Sobek S, Tranvik LJ, Cole JJ. 2005. Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochem Cycles 19(2):Art. No. GB2003

  • Stallard RF. 1998. Terrestrial sedimentation and the C cycle: coupling weathering and erosion to carbon storage. Global Biogeochem Cycles 12:231–7

    Article  CAS  Google Scholar 

  • St. Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM. 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–75

    Article  Google Scholar 

  • Suchet PA, Probst JL. 1995. A global model for present-day atmospheric/soil CO2- consumption by chemical erosion of continental rocks (GEM-CO2). Tellus 47B:273–280

    CAS  Google Scholar 

  • Sundquist ET. 1993. The global carbon dioxide budget. Science 259:934–35

    CAS  Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JV. 2002. Investigation of submarine groundwater discharge. Hydrol Processes 16:2115–29

    Article  Google Scholar 

  • Telmer K, Vezier J. 1999. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem Geol 159:61–86

    Article  CAS  Google Scholar 

  • Tremblay S, Ouimet R, Houle D. 2002. Prediction of organic carbon content in upland forest soils of Quebec, Canada. Can J For Res 32:903–14

    Article  Google Scholar 

  • van der Leeden F, Troise FL, Todd DK. 1990. The water encyclopedia. Lewis Publishers

  • Valentini R, Matteucci G, Dolman AJ, Schulze ED, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski AS, Vesala T, Rannik U, Berbigier P, Loustau D, Guomundsson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncrieff J, Montagnani L, Minerbi S, Jarvis PG. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865

    Article  PubMed  CAS  Google Scholar 

  • Wilcock RJ, Champion PD, Nagels JW, Croker GF. 1999. The influence of aquatic macrophytes on the hydraulic and physico-chemical properties of a New Zealand lowland stream. Hydrobiology 416:203–14

    Article  CAS  Google Scholar 

  • Zhao MS, Heinsch FA, Nemani RR, Running SW. 2005. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–76

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was conducted as part of the Integrating the aquatic with the terrestrial component of the global carbon budget Working Group supported by the National Center for Ecological Analysis and Synthesis, a Center supported by NSF (Grant #DEB-94-21535), the University of California and the A. W. Mellon Foundation at Santa Barbara, and the State of California. Comments from two anonymous reviewers along with those from E. Sundquist and R. Stallard (USGS) and B. Beisner and P. del Giorgio (UQAM) were instrumental in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Cole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, J.J., Prairie, Y.T., Caraco, N.F. et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 10, 172–185 (2007). https://doi.org/10.1007/s10021-006-9013-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-006-9013-8

Keywords

Navigation