Skip to main content
Log in

Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Soybeans are intensively grown over large swaths of land in the Midwestern US. Introduction of the pathogenic fungus responsible for Soybean Rust (Phakopsora pachyrhizi) will likely result in a significant increase in the environmental load of strobilurin and conazole fungicides. We determined the toxicity of six such fungicides to the unicellular algae Pseudokirchneriella subcapitata and the aquatic invertebrate, Daphnia magna. We found that levels of concern of some fungicides were lower than annual average runoff concentrations predicted for Indiana. Our results suggest that pyraclostrobin and propiconazole, and to a lesser extent tebuconazole, may cause impacts to algae and daphnids in areas where soybeans are intensively grown. More studies are needed to describe the ecological effects of sublethal exposures to these fungicides, as well as monitoring environmental concentrations in watersheds where these fungicides are applied to soybeans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Australian Pesticides and Veterinary Medicines Authority (APVMA) (2000) Evaluation of the new active trifloxistrobin in the product Flint Fungicide. http://www.apvma.gov.au/publications/downloads/prstri.pdf. Accessed 5 January 2009

  • Australian Pesticides and Veterinary Medicines Authority (APVMA) (2005) Evaluation of the new active tetraconazole in the product Domark 40ME. http://www.apvma.gov.au/publications/downloads/prstetra.pdf. Accessed 5 January 2009

  • Baer KN, Goulden CE (1998) Evaluation of a high-hardness COMBO medium and frozen algae for Daphnia magna. Ecotoxicol Environ Saf 39:201–206. doi:10.1006/eesa.1997.1627

    Article  CAS  Google Scholar 

  • Bartlett DW, Clough JM, Godwin JR et al (2002) Review: the strobilurin fungicides. Pest Manag Sci 58:649–662. doi:10.1002/ps.520

    Article  CAS  Google Scholar 

  • Betancourt-Lozano M, Baird DJ, Sangha RS et al (2006) Induction of morphological deformities and moulting alterations in Litopenaeus vannamei (Boone) juveniles exposed to the triazole-derivative fungicide Tilt. Arch Environ Contam Toxicol 51:69–78. doi:10.1007/s00244-005-0149-x

    Article  CAS  Google Scholar 

  • Blaise C, Vasseur P (2005) Algal microplate toxicity test. In: Blaise C, Férard JF (eds) Small-scale freshwater toxicity investigations, volume 1—toxicity test methods. Springer, Dordrecht, pp 137–180

    Chapter  Google Scholar 

  • Bringolf RB, Cope WG, Eads CB et al (2007) Acute and chronic toxicity of technical-grade pesticides to glochidia and juveniles of freshwater mussels (Unionidae). Environ Toxicol Chem 26:2086–2093. doi:10.1897/06-522R.1

    Article  CAS  Google Scholar 

  • Deb D (2007) Estimating environmental exposure of emerging agricultural contaminants using spatial data analysis and geographic information system. Doctoral Dissertation, Purdue University. 148 p

  • European Food Safety Authority (EFSA) (1998) Review report for the active substance azoxystrobin. http://ec.europa.eu/food/plant/protection/evaluation/newactive/list2-01_en.pdf. Accessed 5 January 2009

  • European Food Safety Authority (EFSA) (2003) Review report for the active substance propiconazole. http://ec.europa.eu/food/plant/protection/evaluation/existactive/list1-51_en.pdf. Accessed 5 January 2009

  • European Food Safety Authority (EFSA) (2004) Review report for the active substance pyraclostrobin. http://ec.europa.eu/food/plant/protection/evaluation/newactive/pyraclostrobin.pdf. Accessed 5 January 2009

  • Livingston M, Johansson R, Daberkow S et al. (2004) Economic and policy implications of wind-borne entry of Asian soybean rust into the United States. United States Department of Agriculture. Outlook Report N0 OCS04D02. http://www.ers.usda.gov/Publications/OCS/Apr04/OCS04D02/. Accessed 5 January 2009

  • Mazur CS, Kenneke JF (2008) Cross-species comparison of conazole fungicide metabolites using rat and rainbow trout (Onchorhychus mykiss) hepatic microsomes and purified human CYP 3A4. Environ Sci Technol 42:947–954. doi:10.1021/es072049b

    Article  CAS  Google Scholar 

  • Nunkumar A, Caldwell PM, Pretorius ZA (2006) Studies on soybean rust (Phakopsora pachyrhizi). Phytopathology 96:1164

    Google Scholar 

  • Peterson HG, Boutin C, Martin PA et al (1994) Aquatic Phyto-toxicity of 23 pesticides applied at expected environmental concentrations. Aquat Toxicol 28:275–292. doi:10.1016/0166-445X(94)90038-8

    Article  CAS  Google Scholar 

  • SAS Institute, Inc. (2008) SAS/STAT 9.2 User’s guide. SAS Institute, Inc., Cary

    Google Scholar 

  • Spradley PCR, Goodwin AE, Selden GL (2005) Asian soybean rust fungicides and aquatic organisms. FSA7532–1 M-10_05RV. University of Arkansas Division of Agriculture, Cooperative Extension Service, Little Rock

    Google Scholar 

  • United States Department of Agriculture (USDA) (2008). Acreage report June 2008. http://usda.mannlib.cornell.edu/usda/current/Acre/Acre-06-30-2008.pdf. Accessed 5 January 2009

  • United States Environmental Protection Agency (USEPA) (1995) The use of the benchmark dose approach in health risk assessment. ORD, Washington (EPA/630/R-94/007)

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th edn. United States Environmental Protection Agency, Washington

    Google Scholar 

  • Venkatakrishnan K, von Moltke LL, Greenblatt DJ (2000) Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 38:111–180. doi:10.2165/00003088-200038020-00002

    Article  CAS  Google Scholar 

  • Wogram J, Liess M (2001) Rank ordering of macroinvertebrate species sensitivity to toxic compounds by comparison with that of Daphnia magna. Bull Environ Contam Toxicol 67:360–367

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo G. Ochoa-Acuña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochoa-Acuña, H.G., Bialkowski, W., Yale, G. et al. Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna . Ecotoxicology 18, 440–446 (2009). https://doi.org/10.1007/s10646-009-0298-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0298-1

Keywords

Navigation