Skip to main content
Log in

Chemical Constituents of Fugitive Dust

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Wind erosion selectively winnows the fine, most chemically concentrated portions of surface soils and results in the inter-regional transport of fugitive dust containing plant nutrients, trace elements and other soil-borne contaminants. We sampled and analyzed surface soils, sediments in transport over eroding fields, and attic dust from a small area of the Southern High Plains of Texas to characterize the physical nature and chemical constituents of these materials and to investigate techniques that would allow relatively rapid, low cost techniques for estimating the chemical constituents of fugitive dust from an eroding field. From chemical analyses of actively eroding sediments, it would appear that Ca is the only chemical species that is enriched more than others during the process of fugitive dust production. We found surface soil sieved to produce a sub-sample with particle diameters in the range of 53–74 μm to be a reasonably good surrogate for fugitive dust very near the source field, that sieved sub-samples with particle diameters <10 μm have a crustal enrichment factor of approximately 6, and that this factor, multiplied by the chemical contents of source soils, may be a reasonable estimator of fugitive PM10 chemistry from the soils of interest. We also found that dust from tractor air cleaners provided a good surrogate for dust entrained by tillage and harvesting operations if the chemical species resulting from engine wear and exhaust were removed from the data set or scaled back to the average of enrichment factors noted for chemical species with no known anthropogenic sources. Chemical analyses of dust samples collected from attics approximately 4 km from the nearest source fields indicated that anthropogenic sources of several environmentally important nutrient and trace element species are much larger contributors, by up to nearly two orders of magnitude, to atmospheric loading and subsequent deposition than fugitive dust from eroding soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balerna, A., Bernieri, E., Pecci, M., Polesello, S., Smiraglia, C., & Valsecchi, S. (2003). Chemical and radio-chemical composition of fresh snow samples from northern slopes of Himalayas (Cho Oyo range, Tibet). Atmospheric Environment, 37, 1573–1581.

    Article  CAS  Google Scholar 

  • Biscaye, P. E., & Grousset, F. E. (1998). Ice-core and deep-sea records of atmospheric dust. In A. Busacca (Ed.), Dust aerosols, loess soils, and global change (pp. 101–103). College Agric. Home Econ. Misc. Publ. MISC0190 (1998). Pullman, WA: Washington State Univ.

    Google Scholar 

  • Blank, R. R., Young, J. A., & Allen, F. L. (1999). Aeolian dust in a saline playa environment, Nevada, U.S.A. Journal of Arid Environments, 41, 365–381.

    Article  Google Scholar 

  • Bohn, H. L., McNeal, B. L., & O’Connor, G. A. (1985). Soil Chemistry (2nd ed., p. 327). New York: Wiley.

    Google Scholar 

  • Brooks, S. D., DeMott, P. J., & Kreidenweis, S. M.(2004). Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate. Atmospheric Environment, 38, 1859–1868.

    Article  CAS  Google Scholar 

  • Chen, W., & Fryrear, D. W. (1996). Grain-size distributions of wind-eroded material above a bare flat soil. Physical Geography, 17, 554–584.

    Google Scholar 

  • Chen, W., & Fryrear, D. W. (2002). Sedimentary characteristics of a haboob dust storm. Atmospheric Research, 61, 75–85.

    Article  Google Scholar 

  • Chow, J. C., & Watson, J. G. (1997). Fugitive dust and other source contributions to PM 10 in Nevada’s Las Vegas Valley. Vol. 2, DRI Doc. No. 4039.2F1. Reno, NV: Desert Res. Inst.

  • Chow, J. C., Watson, J. G., Ashbaugh, L. L., & Magliano, K. L. (2003). Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California. Atmospheric Environment, 37, 1317–1340.

    Article  CAS  Google Scholar 

  • Cizdziel, J. V., & Hodge, V. F. (2000). Attics as archives for house infiltrating pollutants: trace elements and pesticides in attic dust and soil from southern Nevada and Utah. Microchemical Journal, 64, 85–92.

    Article  CAS  Google Scholar 

  • Dastoor, A. P., &, Larocque, Y. (2004). Global circulation of atmospheric mercury: A modelling study. Atmospheric Environment, 38, 147–161.

    Article  CAS  Google Scholar 

  • Davis, J. J., & Gulson, B. L. (2005). Ceiling (attic) dust: A “museum” contamination and potential hazard. Environmental Research, 99, 177–194.

    Article  CAS  Google Scholar 

  • Ellis, W. G., Jr., & Merrill, J. T. (1995). Trajectories for Saharan dust transported to Barbados using Stoke’s Law to describe gravitational settling. Journal of Applied Meteorology, 34, 1716–1726.

    Article  Google Scholar 

  • Fernandez-Espinosa, A. J., Rodriguez, M. T., & Alvarez, F. F. (2004). Source characterization of fine urban particles by multivariate analysis of trace metal speciation. Atmospheric Environment, 38, 873–886.

    Article  CAS  Google Scholar 

  • Fryrear, D. W. (1981). Dust storms in the southern great plains. Transactions of the ASAE, 24, 991–994.

    Google Scholar 

  • Fryrear, D. W. (1986). A field dust sampler. Journal of Soil and Water Conservation, 41, 117–120.

    Google Scholar 

  • Fryrear, D. W., Slaeh, A., Bilbro, J. D., Schomberg, H. M., Stout, J. E., & Zobeck, T. M. (1998). Revised wind erosion equation. United States Dept. of Agriculture, Agricultural Research Service Plant Stress and Water Conservation Laboratory Tech. Bull. No.1. http://www.csrl.ars.usda.gov/wewc/rweq.htm.

  • Ganor, E., Foner, H. A., & Gravenshorst, G. (2003). The amount and nature of the dustfall on Lake Kinneret (the Sea of Galilee), Israel: flux and fractionation. Atmospheric Environment, 37, 4301–4315.

    Article  CAS  Google Scholar 

  • Gao, Y. R., Arimoto, R., Duce, R. A., Lee, D. S., & Zhou, M. Y. (1992). Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low dust year. Journal Geophysical Research, 97(D4), 3767–3777.

    CAS  Google Scholar 

  • Gillette, D. A. (1977). Fine particulate emissions due to wind erosion. Transactions of the ASAE, 20, 890–897.

    Google Scholar 

  • Glaccum, R. A., & Prospero, J. M. (1980). Saharan aerosols over the tropical North Atlantic – mineralogy. Marine geology, 37, 295–321.

    Article  CAS  Google Scholar 

  • Ilacqua, V., Freeman, N. C. J., Fagliano, J., & Lioy, P. J. (2003). The historical record of air pollution as defined by attic dust. Atmospheric Environment, 37, 2379–2389.

    Article  CAS  Google Scholar 

  • ISC (Interscience Committee) (1989). Methods of air sampling and analysis (3rd ed., pp. 365–369). In J. P. Lodge, Jr. (Ed.). Chelsea, MI, USA: Lewis Publishers.

  • Kiefert, L., McTainsh, G. H., & Nickling, W. G. (1986). Sedimentological characteristics of Saharan and Australian dusts. In S. Guerzoni & R. Chester (Eds.), The impact of desert dust across the Mediterranean (pp. 183–190). The Netherlands: Kluwer.

    Google Scholar 

  • Kulshrestha, M. J., Kulshrestha, U. C., Parashar, D. C., & Vairamani, M. (2003). Estimation of SO4 contribution by dry deposition of SO2 onto the dust particles in India. Atmospheric Environment, 37, 3057–3063.

    Article  CAS  Google Scholar 

  • Laprade, K. E. (1957). Dust-storm sediments of the Lubbock area, Texas. Bulletin of the American Association of Petroleum Geologists, 41, 709–726.

    Google Scholar 

  • Larney, F. J., Leys, J. F., Muller, J. F., & McTainsh, G. H. (1999). Dust and endosulfan deposition in cotton-growing area of Northern New South Wales, Australia. Journal of Environmental Quality, 28, 692–701.

    Article  CAS  Google Scholar 

  • Lioy, P. J., Freeman, N. C. G., & Millette, J. R. (2002). Dust: A metric for use in residential and building exposure assessment and source characterization. Environmental Health Perspectives, 110, 969–983.

    Article  CAS  Google Scholar 

  • Lowenthal, D. H., Borys, R. D., Choularton, T. W., Bower, K. N., Flynn, M. J., & Gallagher, M. W. (2004). Parameterization of the cloud droplet–sulfate relationship. Atmospheric Environment, 38, 287–292.

    Article  CAS  Google Scholar 

  • Malcolm, L. P., & Raupach, M. R. (1991). Measurements in an air settling tube of the terminal velocity distribution of soil material. Journal of Geophysical Research, 96, 15275–15286.

    Article  Google Scholar 

  • Pewe, T. L. (1986). Desert dust: An overview. In T. L. Pewe (Ed.), Desert dust: Origin, characteristics, and effects on man. Geol. Soc. Am. Spec. Publ. 186. Boulder, CO: Geol. Soc. Am.

  • Prospero, J. M. (1999). Long term measurements of the transport of African mineral dust to the south-eastern United States: Implications for regional air quality. Journal Geophysical Research, 104, 15917–15927.

    Article  CAS  Google Scholar 

  • Reheis, M. C. (1997). Dust deposition downwind of Owens (dry) Lake, 1991–1994: Preliminary findings. Journal Geophysical Research, 102, 25999–26008.

    Article  CAS  Google Scholar 

  • Shaw, G. E. (1980). Transport of Asian desert aerosol to the Hawaiian Islands. Journal of Applied Meteorology, 19, 1254–1259.

    Article  Google Scholar 

  • Sterk, G., Hermann, L., & Bationo, A. (1996). Wind-blown nutrient and soil productivity changes in southwest Niger. Land Degradation & Development, 7, 325–335.

    Article  Google Scholar 

  • Stetler, L. D., & Saxton, K. E. (1995). Simultaneous wind erosion and PM10 fluxes from agricultural lands on the Columbia Plateau. In: Proc. of the Air and Waste Management Association 88th Annual Meeting (p. 16). San Antonio, 95-MP12.03.

  • Stout, J. E. (2001). Dust and environment in the Southern High Plains of North America. Journal of Arid Environments, 47, 421–441.

    Article  Google Scholar 

  • Stout, J. E., & Zobeck, T. M. (1996). The Wolfforth field experiment: A wind erosion study. Soil Science Society of America Journal, 61, 616–632.

    Google Scholar 

  • Tazaki, K., Wakimoto, R., Minami, Y., Yamamoto, M., Miyata, K., Sato, K. et al. (2004). Transport of carbon-bearing dusts from Iraq to Japan during Iraq’s war. Atmospheric Environment, 38, 2091–2109.

    Article  CAS  Google Scholar 

  • Wood, W. W., & Sanford, W. E. (1995). Eolian transport, saline lake basins and groundwater solutes. Water Resources Research, 31, 3121–3129.

    Article  Google Scholar 

  • Woodruff, N. P., & Hagen, L. J. (1972). Dust in the great plains (pp. 241–258). Great Plains Agricultural Council, Kansas Experiment Station, Bull. No. 1289, Pub. No. 60.

  • Zhang, D. D., Peart, M., Jim, C. Y., He, Y. Q., Li, B. S., & Chen, J. A. (2003). Precipitation chemistry of Lhasa and other remote towns, Tibet. Atmospheric Environment, 37, 231–240.

    Article  CAS  Google Scholar 

  • Zobeck, T. M. (1989). Fast-Vac: A vacuum system to rapidly sample loose granular material. Transactions of the ASAE, 32, 1316–1318.

    Google Scholar 

  • Zobeck, T. M., & Fryrear, D. W. (1986a). Chemical and physical characteristics of windblown sediment. I. Quantities and physical characteristics. Transactions of the ASAE, 29, 1032–1036.

    Google Scholar 

  • Zobeck, T. M., & Fryrear, D. W. (1986b). Chemical and physical characteristics of windblown sediment. II. Chemical characteristics and total soil and nutrient discharge. Transactions of the ASAE, 29, 1037–1041.

    CAS  Google Scholar 

  • Zobeck, T. M., Gill, T. E., & Popham, T. W. (1999). A two-parameter Weibull function to describe airborne particle size distributions. Earth Surface Processes and Landforms, 24, 943–955.

    Article  Google Scholar 

  • Zobeck, T. M., Parker, N. C., Haskell, S., & Gouding, K. (2000). Scaling up from field to region for wind erosion prediction using a field-scale wind erosion model and GIS. Agriculture, Ecosystems and Environment, 82, 247–259.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Scott Van Pelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Pelt, R.S., Zobeck, T.M. Chemical Constituents of Fugitive Dust. Environ Monit Assess 130, 3–16 (2007). https://doi.org/10.1007/s10661-006-9446-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-006-9446-8

Keywords

Navigation