Skip to main content

Advertisement

Log in

Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Warming and elevated atmospheric CO2 (eCO2) can elicit contrasting responses on different SOM pools, thus to understand the effects of combined factors it is necessary to evaluate individual pools. Over two years, we assessed responses to eCO2 and warming of SOM pools, their susceptibility to decomposition, and whether these responses were mediated by plant inputs in a semi-arid grassland at the PHACE (Prairie Heating and CO2 Enrichment) experiment. We used long-term soil incubations and assessed relationships between plant inputs and the responses of the labile and resistant pools. We found strong and contrasting effects of eCO2 and warming on the labile C pool. In 2008 labile C was increased by eCO2 and was positively related to plant biomass. In contrast, in 2007 eCO2 and warming had interactive effects on the labile C, and the pool size was not related to plant biomass. Effects of warming and eCO2 in this year were consistent withtreatment effects on soil moisture and temperature and their effects on labile C decomposition. The decomposition rate of the resistant C was positively related to indicators of plant C inputs. Our approach demonstrated that SOM pools in this grassland can have early and contrasting responses to climate change factors. The labile C pool in the mixed-grass prairie was highly responsive to eCO2 and warming but the factors behind such responses were highly dynamic across years. Results suggest that in this grassland the resistant C pool could be negatively affected by increases in plant-production driven available soil C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allard V, Newton PCD, Lieffering M, Soussana JF, Carran RA, Matthew C (2005) Increased quantity and quality of coarse soil organic matter fraction at elevated CO2 in a grazed grassland are a consequence of enhanced root growth rate and turnover. Plant Soil 276(1–2):49–60

    Article  CAS  Google Scholar 

  • Belay-Tedla A, Zhou XH, Su B, Wan SQ, Luo YQ (2009) Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the us great plains subjected to experimental warming and clipping. Soil Biol Biochem 41(1):110–116

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45(2):115–131

    Article  Google Scholar 

  • Cardon ZG, Hungate BA, Cambardella CA, Chapin FS, Field CB, Holland EA, Mooney HA (2001) Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biol Biochem 33(3):365–373

    Article  CAS  Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci USA 104(12):4990–4995

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS, McFarland J, McGuire AD, Euskirchen ES, Ruess RW, Kielland K (2009) The changing global carbon cycle: linking plant-soil carbon dynamics to global consequences. J Ecol 97(5):840–850

    Article  CAS  Google Scholar 

  • Cheng L, Leavitt SW, Kimball BA, Pinter PJ, Ottmane MJ, Matthias A, Wall GW, Brooks T, Williams DG, Thompson TL (2007) Dynamics of labile and recalcitrant soil carbon pools in a sorghum free-air CO2 enrichment (FACE) agroecosystem. Soil Biol Biochem 39(9):2250–2263

    Article  CAS  Google Scholar 

  • Collins HP, Elliott ET, Paustian K, Bundy LC, Dick WA, Huggins DR, Smucker AJM, Paul EA (2000) Soil carbon pools and fluxes in long-term corn belt agroecosystems. Soil Biol Biochem 32(2):157–168

    Article  CAS  Google Scholar 

  • Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009) Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Glob Chang Biol 15(8):2003–2019

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173

    Article  PubMed  CAS  Google Scholar 

  • Del Galdo I, Oechel WC, Cotrufo MF (2006) Effects of past, present and future atmospheric CO2 concentrations on soil organic matter dynamics in a chaparral ecosystem. Soil Biol Biochem 38(11):3235–3244

    Article  Google Scholar 

  • de Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol 12(11):2077–2091

    Article  Google Scholar 

  • de Graaff MA, Van Kessel C, Six J (2009) Rhizodeposition-induced decomposition increases N availability to wild and cultivated wheat genotypes under elevated CO2. Soil Biol Biochem 41(6):1094–1103

    Article  Google Scholar 

  • Dijkstra FA, Cheng WX (2007a) Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10(11):1046–1053

    Article  PubMed  Google Scholar 

  • Dijkstra FA, Cheng WX (2007b) Moisture modulates rhizosphere effects on C decomposition in two different soil types. Soil Biol Biochem 39(9):2264–2274

    Article  CAS  Google Scholar 

  • Dijkstra FA, Cheng WX, Johnson DW (2006) Plant biomass influences rhizosphere priming effects on soil organic matter decomposition in two differently managed soils. Soil Biol Biochem 38(9):2519–2526

    Article  CAS  Google Scholar 

  • Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–U210

    Article  PubMed  CAS  Google Scholar 

  • Fu SL, Cheng WX, Susfalk R (2002) Rhizosphere respiration varies with plant species and phenology: a greenhouse pot experiment. Plant Soil 239(1):133–140

    Article  CAS  Google Scholar 

  • Garten CT, Classen AT, Norby RJ (2009) Soil moisture surpasses elevated CO2 and temperature as a control on soil carbon dynamics in a multi-factor climate change experiment. Plant Soil 319(1–2):85–94

    Article  CAS  Google Scholar 

  • Giesler R, Hogberg MN, Strobel BW, Richter A, Nordgren A, Hogberg P (2007) Production of dissolved organic carbon and low-molecular weight organic acids in soil solution driven by recent tree photosynthate. Biogeochemistry 84(1):1–12

    Article  CAS  Google Scholar 

  • Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB (2002) Nonlinear grassland responses to past and future atmospheric CO2. Nature 417(6886):279–282

    Article  PubMed  CAS  Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176):289–292

    Article  PubMed  CAS  Google Scholar 

  • Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154(3):791–795

    Article  Google Scholar 

  • Hoosbeek MR, Lukac M, van Dam D, Godbold DL, Velthorst EJ, Biondi FA, Peressotti A, Cotrufo MF, de Angelis P, Scarascia-Mugnozza G (2004) More new carbon in the mineral soil of a poplar plantation under free air carbon enrichment (POPFACE): cause of increased priming effect? Glob Biogeochem Cycles 18(1)

  • Hungate BA, van Groenigen KJ, Six J, Jastrow JD, Lue YQ, de Graaff MA, van Kessel C, Osenberg CW (2009) Assessing the effect of elevated carbon dioxide on soil carbon: A comparison of four meta-analyses. Glob Chang Biol 15(8):2020–2034

    Article  Google Scholar 

  • Hutsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition—an important source for carbon turnover in soils. J Plant Nutr Soil Sci-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 165(4):397–407

    Article  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Owensby CE (2000) Long-term effects of elevated atmospheric CO2 on below-ground biomass and transformations to soil organic matter in grassland. Plant Soil 224(1):85–97

    Article  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005) Elevated atmospheric carbon dioxide increases soil carbon. Glob Chang Biol 11(12):2057–2064

    Article  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321(1–2):5–33

    Article  CAS  Google Scholar 

  • Kimball BA, Conley MM, Wang S, Lin X, Luo C, Morgan J, Smith D (2008) Infrared heater arrays for warming ecosystem field plots. Glob Chang Biol 14(2):309–320

    Article  Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38(9):2510–2518

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 165(4):382–396

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42(9):1363–1371

    Article  CAS  Google Scholar 

  • Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP (2009) Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2. Soil Biol Biochem 41(1):54–60

    Article  CAS  Google Scholar 

  • Liu WX, Zhang Z, Wan SQ (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15(1):184–195

    Article  Google Scholar 

  • Luo YQ, Hui DF, Zhang DQ (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87(1):53–63

    Article  PubMed  Google Scholar 

  • Luo YQ, Gerten D, Le Maire G, Parton WJ, Weng ES, Zhou XH, Keough C, Beier C, Ciais P, Cramer W, Dukes JS, Emmett B, Hanson PJ, Knapp A, Linder S, Nepstad D, Rustad L (2008) Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Glob Chang Biol 14(9):1986–1999

    Article  Google Scholar 

  • Miglietta F, Hoosbeek MR, Foot J, Gigon F, Hassinen A, Heijmans M, Peressotti A, Saarinen T, van Breemen N, Wallen B (2001) Spatial and temporal performance of the miniface (free air CO2 enrichment) system on bog ecosystems in northern and central europe. Environ Monit Assess 66(2):107–127

    Article  PubMed  CAS  Google Scholar 

  • Milchunas DG, Morgan JA, Mosier AR, LeCain DR (2005) Root dynamics and demography in shortgrass steppe under elevated CO2, and comments on minirhizotron methodology. Glob Chang Biol 11(10):1837–1855

    Article  Google Scholar 

  • Morgan JA, Mosier AR, Milchunas DG, LeCain DR, Nelson JA, Parton WJ (2004a) CO2 enhances productivity, alters species composition, and reduces digestibility of shortgrass steppe vegetation. Ecol Appl 14(1):208–219

    Article  Google Scholar 

  • Morgan JA, Pataki DE, Korner C, Clark H, Del Grosso SJ, Grunzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004b) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140(1):11–25

    Article  PubMed  CAS  Google Scholar 

  • Norby RJ, Luo YQ (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162(2):281–293

    Article  Google Scholar 

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004) Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci USA 101(26):9689–9693

    Article  PubMed  CAS  Google Scholar 

  • Parton WJ, Morgan JA, Wang GM, Del Grosso S (2007) Projected ecosystem impact of the prairie heating and CO2 enrichment experiment. New Phytol 174(4):823–834

    Article  PubMed  CAS  Google Scholar 

  • Pendall E, King JY (2007) Soil organic matter dynamics in grassland soils under elevated CO2: insights from long-term incubations and stable isotopes. Soil Biol Biochem 39(10):2628–2639

    Article  CAS  Google Scholar 

  • Pendall E, Del Grosso S, King JY, LeCain DR, Milchunas DG, Morgan JA, Mosier AR, Ojima DS, Parton WA, Tans PP, White JWC (2003) Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a colorado grassland. Glob Biogeochem Cycles 17(2)

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo YQ, Megonigal JP, Olsrud M, Ryan MG, Wan SQ (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162(2):311–322

    Article  Google Scholar 

  • Pepper DA, Del Grosso SJ, McMurtrie RE, Parton WJ (2005) Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO2], temperature and nitrogen input. Glob Biogeochem Cycles 19(1)

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York

    Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4):543–562

    Article  Google Scholar 

  • Shen WJ, Reynolds JF, Hui DF (2009) Responses of dryland soil respiration and soil carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation, and atmospheric [CO2]: a simulation analysis. Glob Chang Biol 15(9):2274–2294

    Article  Google Scholar 

  • Sherrod SK, Belnap J, Miller ME (2002) Comparison of methods for nutrient measurement in calcareous soils: ion-exchange resin bag, capsule, membrane, and chemical extractions. Soil Sci 167(10):666–679

    Article  CAS  Google Scholar 

  • Shim JH, Pendall E, Morgan JA, Ojima DS (2009) Wetting and drying cycles drive variations in the stable carbon isotope ratio of respired carbon dioxide in semi-arid grassland. Oecologia 160(2):321–333

    Article  PubMed  Google Scholar 

  • Taneva L, Gonzalez-Meler MA (2008) Decomposition kinetics of soil carbon of different age from a forest exposed to 8 years of elevated atmospheric CO2 concentration. Soil Biol Biochem 40(10):2670–2677

    Article  CAS  Google Scholar 

  • Townsend AR, Vitousek PM, Desmarais DJ, Tharpe A (1997) Soil carbon pool structure and temperature sensitivity inferred using CO2 and (13) CO2 incubation fluxes from five Hawaiian soils. Biogeochemistry 38(1):1–17

    Article  CAS  Google Scholar 

  • Wan SQ, Norby RJ, Pregitzer KS, Ledford J, O’Neill EG (2004) CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytol 162(2):437–446

    Article  Google Scholar 

  • Wan SQ, Hui DF, Wallace L, Luo YQ (2005) Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob Biogeochem Cycles 19(2)

  • Wedin DA, Pastor J (1993) Nitrogen mineralization dynamics in grass monocultures. Oecologia 96(2):186–192

    Article  Google Scholar 

  • Weintraub MN, Scott-Denton LE, Schmidt SK, Monson RK (2007) The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia 154(2):327–338

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dan LeCain and David Smith for technical support with the field experiment and the lab of Ronald F. Follett for the soil analyses. We thank Sarah Berg, Hannah Rae Munn, Christine Rumsey, Matthew Wood and Megan Steinweg for assistance in the field and in the lab and Jennifer King for insightful review of the manuscript. This project was supported by USDA-CSREES Soil Processes Program (Grant no. 2008-35107-18655), by the US Department of Energy’s Office of Science (BER) through the Western Regional Center of the National Institute for Climatic Change Research at Northern Arizona University, NSF (DEB# 1021559) and the USDA-Agricultural Research Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolima Carrillo.

Additional information

Responsible Editor: Johan Six.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, Y., Pendall, E., Dijkstra, F.A. et al. Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant Soil 347, 339–350 (2011). https://doi.org/10.1007/s11104-011-0853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0853-4

Keywords

Navigation