Skip to main content
Log in

Diazinon Mitigation in Constructed Wetlands: Influence of Vegetation

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In intensively cultivated areas, agriculture is a significant source of pesticides associated with storm runoff. When these pollutants enter aquatic receiving waters, they have potential to damage nearby aquatic ecosystems. Constructed wetlands are a best management practice (BMP) designed to help alleviate this potential problem. A constructed wetland system (180 × 30 m) comprised of a sediment retention basin and two treatment cells was used to determine fate and transport of a simulated storm runoff event containing the insecticide diazinon and suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results indicated that 43% of the study’s measured diazinon mass was associated with plant material, while 23 and 34% were measured in sediment and water, respectively. Mean diazinon concentrations in water, sediment, and plants for the 55-d study were 18.1 ± 4.5 μg/l, 26.0 ± 8.0 μg/kg, and 97.8 ± 10.7 μg/kg, respectively. Aqueous concentrations fluctuated in the wetlands between 51–86 μg/l for the first 4 h of the experiment; however, by 9 h, aqueous concentrations were approximately 16 μg/l. During the 55 d experiment, 0.3 m of rainfall contributed to fluctuations in diazinon concentrations. Results of this experiment can be used to model future design specifications for mitigation of diazinon and other pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bailey, H. C., DiGiorgio, C., Kroll, K., Miller, J. L., Hinton, D. E., & Starrett, G. (1996). Development of procedures for identifying pesticide toxicity in ambient waters: Carbofuran, diazinon, chlorpyrifos. Environmental Toxicology and Chemistry, 15, 837–845.

    Article  CAS  Google Scholar 

  • Belden, J. B., & Lydy, M. J. (2000). Impact of atrazine on organophosphate insecticide toxicity. Environmental Toxicology and Chemistry, 19, 2266–2274.

    Article  CAS  Google Scholar 

  • Bennett, E. R., Moore, M. T., Cooper, C. M., & Smith, S., Jr. (2000). Method for the simultaneous extraction and analysis of two current use pesticides, atrazine and lambda-cyhalothrin, in sediment and aquatic plants. Bulletin of Environmental Contamination and Toxicology, 64, 825–833.

    Article  CAS  Google Scholar 

  • Bennett, E. R., Moore, M. T., Cooper, C. M., Smith, S., Jr., Shields, F. D., Jr., Drouillard, K., et al. (2005). Vegetated agricultural ditches for the mitigation of pyrethroid associated runoff. Environmental Toxicology and Chemistry, 24, 2121–2127.

    Article  CAS  Google Scholar 

  • Bondarenko, S., Gan, J., Haver, D. L., & Kabashima, J. N. (2004). Persistence of selected organophosphate and carbamate insecticides in waters from a coastal watershed. Environmental Toxicology and Chemistry, 23, 2649–2654.

    Article  CAS  Google Scholar 

  • Brix, H. (1994). Functions of macrophytes in constructed wetlands. Water Science Technology, 4, 71–78.

    Google Scholar 

  • Burkepile, D. E., Moore, M. T., & Holland, M. M. (2000). Susceptibility of five nontarget organisms to aqueous diazinon exposure. Bulletin of Environmental Contamination and Toxicology, 64, 114–121.

    Article  CAS  Google Scholar 

  • California DPR. (2003). Use trends of cholinesterase-inhibiting pesticides http://www.cdpr.ca.gov/docs/pur/pur02rep/trends02.pdf.

  • Cole, S. (1998). The emergence of treatment wetlands. Environmental Science and Technology, 32, 218A–223A.

    Article  Google Scholar 

  • Denton, D. L., Wheelock, C. E., Murray, S. A., Deanovic, L. A., Hammock, B. D., & Hinton, D. E. (2003). Joint acute toxicity of esfenvalerate and diazinon to larval fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry, 22, 336–341.

    Article  CAS  Google Scholar 

  • de Vlaming, V., Connor, V., DiGiorgio, C., Bailey, H. C., Deanovic, L. A., & Hinton, D. E. (2000). Application of whole effluent toxicity test procedures to ambient water quality assessment. Environmental Toxicology and Chemistry, 19, 42–62.

    Article  Google Scholar 

  • Gianessi, L., & Reigner, N. (2006). Pesticide use in US crop production: 2002. Insecticides and other pesticides. Washington, DC: CropLife Foundation Report.

  • Giddings, J. M., Biever, R. C., Annunziato, M. F., & Hosmer, A. J. (1996). Effects of diazinon on large outdoor pond microcosms. Environmental Toxicology and Chemistry, 15, 618–629.

    Article  CAS  Google Scholar 

  • Gilliom, R. J. (2001). Pesticides in the hydrologic system – What do we know and what’s next? Hydrological Processes, 15, 3197–3201.

    Article  Google Scholar 

  • Higgins, M. J., Rock, C. A., Bouchard, R., & Wengrezynek, B. (1993). Controllingagricultural runoff by use of constructed wetlands. In G. A. Moshiri (Ed.), Constructed wetlands for water quality improvement (pp. 359–367). Boca Raton, Florida: CRC.

    Google Scholar 

  • Holmes, R. W., & de Vlaming, V. (2003). Monitoring of diazinon concentrations and loadings, and identification of geographic origins consequent to stormwater runoff from orchards in the Sacramento River watershed, USA. Environmental Monitoring and Assessment, 87, 57–79.

    Article  CAS  Google Scholar 

  • Larson, S. J., Capel, P. D., & Majewski, M. S. (1997). Pesticides in surface waters: Distribution, trends, and governing factors. Chelsea, Michigan: Ann Arbor.

    Google Scholar 

  • Larson, S. J., Gilliom, R. J., & Capel, P. D. (1999). Pesticides in streams of the United States – Initial results from the National Water-Quality Assessment Program. US Geological Survey Water-Resources Investigations Report 98–4222.

  • Locke, M. A. (2004). Mississippi Delta Management Systems Evaluation Area: Overview of water quality issues on a watershed scale. In M. T. Nett, M. A. Locke, & D. A. Pennington (Eds.), Water quality assessments in the Mississippi Delta: Regional solutions, national scope (pp. 1–15). Washington, DC: ACS Symposium Series 877.

  • Moore, M. T., Bennett, E. R., Cooper, C. M., Smith, S., Jr., Farris, J. L., Drouillard, K., et al. (2006). Influence of vegetation in mitigation of methyl parathion. Environmental Pollution, 142, 288–294.

    Article  CAS  Google Scholar 

  • Moore, M. T., Rodgers, J. H., Jr., Cooper, C. M., & Smith, S., Jr. (2000). Constructed wetlands for mitigation of atrazine-associated agricultural runoff. Environmental Pollution, 110, 393–399.

    Article  CAS  Google Scholar 

  • Moore, M. T., Schulz, R., Cooper, C. M., Smith, S., Jr., & Rodgers, J. H., Jr. (2002). Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere, 46, 827–835.

    Article  CAS  Google Scholar 

  • Rodgers, J. H., Jr., Dickson, G. W., Dillon, T., Dorn, P. B., Farmer, J. E., Gearheart, R. A., et al. (1999). Workgroup V synopsis: Constructed wetlands as a risk mitigation alternative. In M. A. Lewis, F. L. Mayer, R. L. Powell, M. K. Nelson, S. J. Klaine, M. G. Henry, & G. W. Dickson (Eds.), Ecotoxicology and risk assessment for Wetlands. Pensacola: SETAC.

    Google Scholar 

  • Sanchez, M., Sanchez, F. E., & Andreu-Moliner, E. (1998). Evaluation of a Daphnia magna renewal life-cycle test method with diazinon. Journal of Environmental Science and Health. Part B, 33, 785–797.

    Google Scholar 

  • Schulz, R. (2004). Field studies on exposure, effects, and risk mitigation of aquatic non-point source insecticide pollution: A review. Journal of Environmental Quality, 33, 419–448.

    Article  CAS  Google Scholar 

  • Schulz, R., Moore, M. T., Bennett, E. R., Farris, J. L., Smith, S., Jr., & Cooper, C. M. (2003a). Methyl parathion toxicity in vegetated and non-vegetated wetland mesocosms. Environmental Toxicology and Chemistry, 22, 1262–1268.

    Article  CAS  Google Scholar 

  • Schulz, R., Moore, M. T., Bennett, E. R., Milam, C. D., Bouldin, J. L., Farris, J. L., et al. (2003b). Acute toxicity of methyl parathion in wetland mesocosms: Assessing the influence of aquatic plants using laboratory testing with Hyalella azteca. Archives of Environmental Contamination and Toxicology, 45, 331–336.

    Article  CAS  Google Scholar 

  • Sharom, M. S., Miles, J. R. W., Harris, C. R., & McEwen, F. L. (1980). Behavior of 12 insecticides in soil and aqueous suspensions of soil and sediment. Water Research, 14, 1096–1100.

    Google Scholar 

  • Sherrard, R. M., Bearr, J. S., Murray-Gulde, C. L., Rodgers, J. H., Jr., & Shah, Y. T. (2004). Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures. Environmental Pollution, 127, 385–394.

    Article  CAS  Google Scholar 

  • US EPA (2004a). 2000–2001 Pesticide sales and usage report. http://www.epa.gov/oppbead1/pestsales/01pestsales/usage2001.html.

  • US EPA (2004b). http://oaspub.epa.gov/waters/national_rept.control#TOP_IMP.

  • US EPA (2005). Aquatic life ambient water quality criteria – diazinon. Office of Water & Office of Science and Technology 4304T. EPA-822-R-05-006.

  • Watanabe, H., & Grismer, M. E. (2001). Diazinon transport through inter-row vegetative filter strips: Micro-ecosystem modeling. Journal of Hydrology, 247, 183–199.

    Article  CAS  Google Scholar 

  • Wauchope, R. D. (1978). The pesticide content of surface water draining from agricultural fields: A review. Journal of Environmental Quality, 7, 459–472.

    Article  CAS  Google Scholar 

  • Weaver, M. A., Zablotowicz, R. M., & Locke, M. A. (2004). Laboratory assessment of atrazine and fluometuron degradation in soils from a constructed wetland. Chemosphere, 57, 853–862.

    Article  CAS  Google Scholar 

  • Wolverton, B. C., & Harrison, D. D. (1973). Aquatic plants for the removal of mevinphos for the aquatic environment. Journal of the Mississippi Academy of Sciences, 19, 84–88.

    Google Scholar 

Download references

Acknowledgments

Authors thank L. Arbuckle, J.L. Bouldin, T. Flemons, F. Gwin, Jr., J.T. Hill, R.L. Lee, R.E. Lizotte, Jr., D. Shaw, R.W. Steinriede, Jr., T. Sullivan, S. Testa III, and T.D. Welch for field assistance and J. Swint for laboratory analyses. Special thanks to S.S. Knight and P. Rodrigue for wetland design information. Thanks also to D.L. Denton for technical assistance and manuscript review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Moore.

Additional information

All programs of the US Department of Agriculture (USDA) are offered on a non-discriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap. Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, M.T., Cooper, C.M., Smith, S. et al. Diazinon Mitigation in Constructed Wetlands: Influence of Vegetation. Water Air Soil Pollut 184, 313–321 (2007). https://doi.org/10.1007/s11270-007-9418-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9418-9

Keywords

Navigation