Skip to main content

Advertisement

Log in

Positive effects of composted biochar on plant growth and soil fertility

  • Research Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Mankind is actually facing serious issues due to the overexploitation of fossil fuels, biomass, soils, nitrogen, and phosphorus. It is claimed that biochar addition to soil improves C sequestration to prevent CO2 from atmospheric cycling. Biochar addition should also increase soil fertility in a similar way as anthropogenic dark earths of Central Amazonia. Previous studies have shown that biochar stimulates plant growth and increase fertilizer efficiency, especially when biochar is combined with organic fertilizers such as compost. However, little is known about optimum addition amounts and mixture ratios of biochar and compost. Indeed most experiments to mimic Terra preta de Indio focused on biochar alone or biochar in combination with mineral fertilizers. Therefore, we studied optimum biochar and compost amounts and mixture ratios with respect to plant response and soil fertility. We tested the effect of total amount from 0 to 200 Mg/ha, and biochar proportion from 0 % to 50 % biochar, of 18 different compost mixtures on growth of oat (Avena sativa L.) and soil properties in a fully randomized greenhouse study with sandy and loamy soil substrates. We sampled soil substrates before and after plant growth and analyzed plant growth and yield, total organic carbon (TOC), total nitrogen (TN), mineralized nitrogen (Nmin), soil reaction (pH), and electrical conductivity (EC) applying standard procedures. Results show that biomass production was increased with rising biochar and compost amounts. Oat plant height and seed weight was improved only with rising biochar amounts, but not with compost amounts. This could be explained by increase of total organic C and total N but not by plant-available ammonium and nitrate. The positive influence of composted biochar on plant growth and soil properties suggests that composting is a good way to overcome biochar’s inherent nutrient deficiency, making it a suitable technique helping to refine farm-scale nutrient cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkinson C, Fitzgerald J, Hipps N (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337(1):1–18. doi:10.1007/s11104-010-0464-5

    Article  CAS  Google Scholar 

  • Barrow CJ (2011) Biochar: potential for countering land degradation and for improving agriculture. Appl Geogr 34:21–28. doi:10.1016/j.apgeog.2011.09.008

    Article  Google Scholar 

  • Berglund LM, DeLuca TH, Zackrisson O (2004) Activated carbon amendments to soil alters nitrification rates in Scots pine forests. Soil Biol Biochem 36(12):2067–2073. doi:10.1016/j.soilbio.2004.06.005

    Article  CAS  Google Scholar 

  • Brodowski S, John B, Flessa H, Amelung W (2006) Aggregate-occluded black carbon in soil. Eur J Soil Sci 57(4):539–546. doi:10.1111/j.1365-2389.2006.00807.x

    Article  Google Scholar 

  • DeLuca TH, Nilsson MC, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133(2):206–214. doi:10.1007/s00442-002-1025-2

    Article  Google Scholar 

  • Fischer D, Glaser B (2012) Synergisms between compost and biochar for sustainable soil amelioration. In: Sunil K, Bharti A (eds) Management of organic waste. InTech, Rijeka, Croatia, pp 167–198. doi:10.5772/31200

    Google Scholar 

  • Gerzabek MH, Pichlmayer F, Kirchmann H, Haberhauer G (1997) The response of soil organic matter to manure amendments in a long-term experiment at Ultuna, Sweden. Eur J Soil Sci 48(2):273–282. doi:10.1111/j.1365-2389.1997.tb00547.x

    Article  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230. doi:10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678. doi:10.1016/S0146-6380(00)00044-9

    Article  CAS  Google Scholar 

  • Hossain MK, Strezo V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manag 92(1):223–228. doi:10.1016/j.jenvman.2010.09.008

    Article  CAS  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187. doi:10.1016/j.agee.2011.08.015

    Article  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2011) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem. doi:10.1016/j.soilbio.2011.10.012

    Google Scholar 

  • Kimetu JM, Lehmann J (2010) Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Research 48(7):577–585. doi:10.1071/SR10036

    Article  CAS  Google Scholar 

  • Kolb S (2007) Understanding the mechanisms by which a manure-based charcoal product affects microbial biomass and activity. Dissertation, University of Wisconsin

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41(2):210–219. doi:10.1016/j.soilbio.2008.10.016

    Article  CAS  Google Scholar 

  • Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Security 1(1):45–57

    Article  Google Scholar 

  • Lehmann J, Joseph S (eds) (2009) Biochar for environmental management: science and technology. Earthscan Publications Ltd: London, pp. 251270

  • Lehmann J, Pereira da Silva J, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249(2):343–357. doi:10.1023/A:1022833116184

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L et al (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41(2):206–213. doi:10.1016/j.orggeochem.2009.09.007

    Article  CAS  Google Scholar 

  • Luo Y, Durenkamp M, deNobili M, Lin Q, Brookes PC (2011) Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH. Soil Biol Biochem 43(11):2304–2314. doi:10.1016/j.soilbio.2011.07.020

    Article  CAS  Google Scholar 

  • Lynch D, VoroneyRP WPR (2005) Soil physical properties and organic matter fractions under forages receiving composts, manure or fertilizer. Compost Sci Utilization 13(4):252–261

    Article  Google Scholar 

  • Mankasingh U, Choi P-C, Ragnarsdottir V (2011) Biochar application in a tropical, agricultural region: A plot scale study in Tamil Nadu, India. Appl Geochem 26(S):218–221. doi:10.1016/j.apgeochem.2011.03.108

  • Marris E (2006) Putting the carbon back: Black is the new green. Nature 442(7103):624–626. doi:10.1038/442624a

    Article  PubMed  CAS  Google Scholar 

  • Mehlich A (1984) Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15(12):1409–1416

    Article  CAS  Google Scholar 

  • Nguyen BT, Lehmann J (2009) Black carbon decomposition under varying water regimes. Org Geochem 40:846–853. doi:10.1016/j.orggeochem.2009.05.004

    Article  CAS  Google Scholar 

  • Prost K, Borchard N, Siemens J, Kautz T, Séquaris JM, Möller A, Amelung W (2013) Biochar affected by composting with farmyard manure. J Environ Qual 4:164–172. doi:10.2134/jeq2012.0064

    Article  Google Scholar 

  • Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175:410–422. doi:10.1002/jpln.201100143

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez–Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. doi:10.1016/S0065-2113(10)05002-9

    Article  CAS  Google Scholar 

  • Spaccini R, Piccolo A, Conte P, Haberhauer G, Gerzabek MH (2002) Increased soil organic carbon sequestration through hydrophobic protection by humic substances. Soil Biol Biochem 34(12):1839–1851. doi:10.1016/S0038-0717(02)00197-9

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macêdo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291(1):275–290. doi:10.1007/s11104-007-9193-9

    Article  CAS  Google Scholar 

  • Thun R, Herrmann R, Knickmann E, Hoffmann G (1991) Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (1): A 1.2.2 Die Untersuchung von Böden. Neumann, Radebeul/Berlin

  • Tryon EH (1948) Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol Monogr 18:81–115

    Article  CAS  Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320(5876):629. doi:10.1126/science.1154960

    Article  PubMed  CAS  Google Scholar 

  • Waters D, van Zwieten L, Singh BP, Downie A, Cowie AL, Lehmann J (2011) Biochar in soil for climate change mitigation and adaptation. Soil Health Clim Change 29:345–368. doi:10.1007/978-3-642-20256-8_15

    Article  Google Scholar 

  • Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011) Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102(10):6273–6278. doi:10.1016/j.biortech.2011.03.006

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the German Ministry for Education and Research (BMBF) for financial support within the coordinated project “Climate protection: CO2 sequestration by use of biomass in a PYREG reactor with steam engine” (01LY0809F). We are indebted to Daniel Fischer, Georg Lemmer, Ananda Erben, and Bianca and Katharina Karnstedt for the help in the greenhouse and with soil analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hardy Schulz.

About this article

Cite this article

Schulz, H., Dunst, G. & Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 33, 817–827 (2013). https://doi.org/10.1007/s13593-013-0150-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0150-0

Keywords

Navigation