Skip to main content
Log in

Conservation tillage for carbon sequestration

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

World soils represent the largest terrestrial pool of organic carbon (C), about 1550 Pg compared with about 700 Pg in the atmosphere and 600 Pg in land biota. Agricultural activities (e.g., deforestation, burning, plowing, intensive grazing) contribute considerably to the atmospheric pool. Expansion of agriculture may have contributed substantially to the atmospheric carbon pool. However, the exact magnitude of carbon fluxes from soil to the atmosphere and from land biota to the soil are not known. An important objective of the sustainable management of soil resources is to increase soil organic carbon (SOC) pool by increasing passive or non-labile fraction. Soil surface management, soil water conservation and management, and soil fertility regulation are all important aspects of carbon sequestration in soil. Conservation tillage, a generic term implying all tillage methods that reduce runoff and soil erosion in comparison with plow-based tillage, is known to increase SOC content of the surface layer. Principal mechanisms of carbon sequestration with conservation tillage are increase in micro-aggregation and deep placement of SOC in the sub-soil horizons. Other useful agricultural practices associated with conservation tillage are those that increase biomass production (e.g., soil fertility enhancement, improved crops and species, cover crops and fallowing, improved pastures and deep-rooted crops). It is also relevant to adopt soil and crop management systems that accentuate humification and increase the passive fraction of SOC. Because of the importance of C sequestration, soil quality should be evaluated in terms of its SOC content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht, A., 1988. Influence du systéme de culture sur é aggrégation d'un vertisol et d'un sol ferrallitique (Antilles). Cahiers ORSTOM, Séries Pedologie 24: 351–353.

    Google Scholar 

  • Blevins, R.L., D. Cook, and S.H. Phillips, 1971. Influence of notillage on soil moisture. Agron. J. 63: 593–596.

    Article  Google Scholar 

  • Blevins, R.L., G.W. Thomas, and P.L. Cornelius, 1977. Influence of no-tillage and N fertilization on certain soil properties after 5 years of continuous corn. Agron. J. 69: 383–386.

    Article  CAS  Google Scholar 

  • Bouwman, A.F. (ed), 1990. Soils and The Greenhouse Effect. J. Wiley & Sons, Chichester, U.K.

    Google Scholar 

  • Brams, E.A., 1971. Continuous cultivation of West African soils: organic matter diminuition and effects of applied lime and phosphorus. Plant and Soil 53: 401–414.

    Article  Google Scholar 

  • Brown, J.R., 1994. The Sanborn field experiment. In R.A. Leigh and A.E. Johnson (eds) “Long-term Experiments in Agriculture and Ecological Sciences”, CAB International, Wallingford U.K.: 39–51.

    Google Scholar 

  • Carter, M.R. (ed), 1993. Conservation tillage in temperate agroecosystems. Lewis Publishers, Boca Raton, Fl, 390 pp.

    Google Scholar 

  • Chan, K.Y. and J.A. Mead, 1988. Surface physical properties of a sandy loam soil under different tillage practices. Aust. J. Soil Res. 26: 549–559.

    Article  Google Scholar 

  • Dalal, R.C., 1989. Long-term effects of no-tillage, crop residue, and nitrogen application on properties of a Vertisol. Soil Sci. Soc. Am. J. 53: 1511–1515.

    Article  CAS  Google Scholar 

  • Dalal, R.C., 1992. Long-term trends in total nitrogen of a vertisol subjected to zero-tillage, nitrogen application and stubble retention. Aust. J. Soil Res. 30: 223–231.

    Article  CAS  Google Scholar 

  • Datiri, B.C. and B. Lowery, 1991a. Effects of conservation tillage on hydraulic properties of a Griswold silt loam soil. Soil Tillage Res. 21: 243–256.

    Article  Google Scholar 

  • Datiri, B.C. and B. Lowery, 1991b. Effects of conservation tillage on hydraulic properties of a Griswold silt loam soil. Soil Tillage Res. 21: 257–271.

    Article  Google Scholar 

  • Fausey, N.R. and R. Lal, 1992. Drainage-tillage effects on a Crosby-Kokomo soil association in Ohio III. Organic matter content and chemical properties. Soil Technology 5: 1–12.

    Article  Google Scholar 

  • Feller, C., J.L. Chopart, and F. Dancette, 1987. Effet de divers modes de restitution de pailles de mil sur le niveau et al nature du stock organique dans deux sols sableux tropicaux (Senegal). Cahiers ORSTOM, Series Pedologie 24: 237–252.

    Google Scholar 

  • Fisher, M.J., I.M. Rao, M.A. Ayarza, C.E. Lascano, J.I. Sanz, R.J. Thomas and R.R. Vera, 1994. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371: 236–238.

    Article  Google Scholar 

  • Greenland, D.J., 1972. Adsorption of PVA by oxides and clays with non-expanding lattices. In M. De Boodt (ed) “Fundamentals of Soil Conditioning”, Symp. Proc. 17–21 April, 1972, Gent, Belgium.

  • Hall, D.O., 1989. Carbon flows in biosphere: present and future. J. Geographical Society 146: 175–181.

    Google Scholar 

  • Houghton, R.A., J.E. Hobbie, J.M. Melillo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell, 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53: 235–262.

    Article  CAS  Google Scholar 

  • Jenkins, D.S. and A. Ayanaba, 1977. Decomposition of carbon-14 labelled plant material under tropical conditions. Soil Sci. Soc. Am. J. 41: 912–916.

    Article  Google Scholar 

  • Jenkinson, D.S. and J.H. Rayner, 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123: 298–305.

    CAS  Google Scholar 

  • Johnson, M.G., 1995. The role of soil management in sequestering soil C. In R. Lal et al. (ed) “Soil Management and Greenhouse Effect”, CRC/Lewis Publishers, Boca Raton, Fl.: 351–363.

    Google Scholar 

  • Johnson, M.G. and J.S. Kern, 1991. Sequestering carbon in soils: A workshop to explore the potential for mitigating global climate change. EPA/600/3-91/031. USEPA, Corvallis, 85 pp.

    Google Scholar 

  • Juo, A.S.R. and R. Lal, 1978. Nutrient profile in a tropical Alfisol under conventional and no-till systems. Soil Sci. 127: 168–173.

    Google Scholar 

  • Kang, B.T., G.F. Wilson, and L. Sipkens, 1981. Alley cropping maize with Leucaena in Southern Nigeria. Plant Soil 63: 165–179.

    Article  Google Scholar 

  • Kannegieter, A., 1969. The combination of a short term pueraria fallow, zero cultivation and fertilizer application: Its effects on a following maize crop. Trop. Agr. 125: 1–18.

    Google Scholar 

  • Karlen, D.L., D.C. Erbach, T.C. Kasper, T.S. Colvin, E.C. Berry and D.R. Timmons, 1990. Soil tilth: a review of past perceptions and future needs. Soil Sci. Soc. Am. J. 54: 153–160.

    Article  Google Scholar 

  • Kemper, B. and R. Derpsch, 1981. Results of studies made in 1978 and 1979 to control erosion by cover crops and no-tillage techniques in Parana, Brazil. Soil Tillage Res. 1: 253–267.

    Article  Google Scholar 

  • Kern, J.S. and M.G. Johnson, 1993. Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci. Soc. Am. J. 57: 200–210.

    Article  Google Scholar 

  • Lal, R., 1975. Role of mulching techniques in tropical soil and water management. IITA Tech. Bull. 1, 38 pp.

  • Lal, R., 1978. Influence of within-and between-row mulching on soil temperature, soil moisture, root development and yield of maize in a tropical soil. Field Crops Res. 1: 127–139.

    Article  Google Scholar 

  • Lal, R., 1979. Influence of six years of no-tillage and conventional plowing on fertilizer response of maize on an Alfisol in the tropics. Soil Sci. Soc. Am. J. 43: 399–403.

    Article  CAS  Google Scholar 

  • Lal, R., 1986. Soil surface management in the tropics for intensive land use and high and sustained production. Adv. Soil Sci. 5: 1–105.

    Google Scholar 

  • Lal, R., 1989. Conservation tillage for sustainable agriculture. Adv. Agron. 42: 85–197.

    Google Scholar 

  • Lal, R., 1995. The role of residues management in sustainable agricultural systems. J. Sustainable Agric. 5: 51–78.

    Google Scholar 

  • Lal, R. and B.T. Kang, 1982. Management of organic matter in soils of the tropics and sub-tropics. XII Cong. Int'l Soc. Soil Sci., New Delhi, India: 152–178.

  • Lal, R. and T.J. Logan, 1995. Agricultural activities and greenhouse gas emissions from soils of the tropics. In R. Lal, J. Kimble, E. Levine and B.A. Stewart (eds) “Soil Management and Greenhouse Effect”, CRC/Lewis Publishers, Boca Raton, Fl: 293–307.

    Google Scholar 

  • Lal, R., G.F. Wilson, and B.N. Okigbo, 1978. No-tillage farming after various grasses and leguminous cover crops in tropical Alfisols I. Crop performance. Field Crops Res. 1: 71–84.

    Article  Google Scholar 

  • Lal, R., G.F. Wilson, and B.N. Okigbo, 1979. Changes in properties of an Alfisol produced by various crop covers. Soil Sci. 127: 377–382.

    Article  CAS  Google Scholar 

  • Lal, R., D. De Vleeschauwer, and R.M. Nganje, 1980. Changes in properties of a newly cleared Alfisol as affected by mulching. Soil Sci. Soc. Am. J. 44: 827–833.

    Article  CAS  Google Scholar 

  • Lal, R., T.J. Logan and N.R. Fausey, 1989. Long-term tillage effects on a Mollic Ochraqualf in northwest Ohio. III Soil nutrient profile. Soil Tillage Res. 15: 371–382.

    Article  Google Scholar 

  • Lal, R., J. Kimble, E. Levine and B.A. Stewart (eds), 1995a. Soils and Global Change. CRC/Lewis Publishers, Boca Raton, Fl., 440 pp.

    Google Scholar 

  • Lal, R. J. Kimble, E. Levine and B.A. Stewart (eds), 1995b. Soil Management and Greenhouse Effect. CRC/Lewis Publishers, Boca Raton, Fl., 383 pp.

    Google Scholar 

  • Lavelle, P., 1988. Earthworm activities and soil systems. Biol. Fertil. Soils 6: 237–251.

    Article  Google Scholar 

  • Letey, J., 1985. Relationship between soil physical properties and crop production. Adv. Soil Sci. 1: 277–294.

    Google Scholar 

  • Levey, G.J., 1996. Soil stabilizers. In M. Agassi (ed) “Soil Erosion, Conservation and Rehabilitation”, Marcel Dekker, Inc., New York, 402 pp.

    Google Scholar 

  • McCown, R.L., G. Haaland, and C. de Hann, 1979. The interaction between cultivation and livestock production in semi-arid Africa. In: A.R. Hall, G.H. Cannell, and H.W. Lawton (eds), Ecological Studies 34, Agriculture in Semi-Arid Environments. Springer-Verlag, Berlin, pp. 297–332.

    Google Scholar 

  • McCown, R.L., R.K. Jones, and D.C.I. Peake, 1985. Evaluation of a no-till tropical legume ley farming strategy. In: R.C. Muchow (ed), Agro-research for Australias semi-arid tropics, Univ. Qld., Australia, pp. 450–472.

    Google Scholar 

  • Martins, P.F., C.C. Cerri, B. Volkoff, E. Andreux and A. Chauvel, 1991. Consequency of clearing and tillage on the soil of a natural Amazonian ecosystem. Forest Ecol. Manage. 38: 273–282.

    Article  Google Scholar 

  • Nye, P.H. and D.J. Greenland, 1960. The Soil Under Shifting Cultivation. Technical Communication 51. Commonwealth Bureau of Soils, Harpenden, U.K.

    Google Scholar 

  • Ohiri, A.C. and H.C. Ezumah, 1990. Tillage effects on cassava production and some soil properties. Soil & Tillage Res. 17: 221–229.

    Article  Google Scholar 

  • Parton, W.J., D.S. Schimel, C.V. Cole, and D.S. Ojima, 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Amer. J. 51: 1173–1179.

    Article  CAS  Google Scholar 

  • Pereira, H.C., E.M. Chenery, and W.R. Mills, 1954. The transient effects of grasses on the structure of tropical soils. Emp. J. Exp. Agric. 22: 148–160.

    Google Scholar 

  • Post, W.M. and L.K. Mann, 1990a. Changes in soil organic carbon and nitrogen as a result of cultivation. In: A.E. Bouwman (ed) “Soils and The Greenhouse Effect”, J. Wiley, Chichester, U.K.

    Google Scholar 

  • Post, W.M., T. Peng, W.R. Emmanuel, A.W. King, V.H. Dale, and D.L. De Angelis, 1990b. The global carbon cycle. Am. Scient. 78: 310–326.

    Google Scholar 

  • Prove, B.G., R.J. Loch, J.L. Foley, V.J. Anderson, and D.R. Younger, 1990. Improvements in aggretation and infiltration characteristics of a Krasnozem under maize with direct drill and stubble retention. Aust. J. Soil Res. 28: 577–590.

    Article  Google Scholar 

  • Resck, D.V.S., J. Pereia, and J.E. da Silva, 1991. Dinâmica da matéria orgânica na Regiao dos Cerrados. Documentos 36. Planaltina, Brazil, EMBRAPA, CPAC.

    Google Scholar 

  • Roth, C.H., B. Meyer, H.G. Frede and R. Derpsch, 1986. The effect of different soybean tillage systems on infiltrability and erosion susceptibility of an Oxisol in Parana, Brazil. J. Agron. Crop Sci. 157: 217–226.

    Article  Google Scholar 

  • Roth, C.H., B. Meyer, H.G. Frede, and R. Derpsch, 1988. Effect of mulch rates and tillage systems on infiltrability and other soil physical properties of an Oxisol in Parana, Brazil. Soil Tillage Res. 11: 81–91.

    Article  Google Scholar 

  • Sidiras, N. and C.H. Roth, 1987. Infiltration measurements with double-ring infiltrometers and a rainfall simulator under different surface conditions on an Oxisol. Soil Tillage Res. 9: 161–168.

    Article  Google Scholar 

  • Sommer, C. and M. Zach, 1992. Managing traffic induced Oxisol compaction by using conservation tillage. Soil Tillage Res. 24: 319–326.

    Article  Google Scholar 

  • Teixeira, L.B. and J.B. Bastos, 1989. Materia organica nos ecosistemas de floresta primária e pastagens na Amezônia Central. EMBRAPA-CPATU, Belem, Brazil, 26 pp.

    Google Scholar 

  • Thorburn, P.J., 1992. Structural and hydrological changes in a Vertisol under different fallow management techniques. Soil Tillage Res. 23: 341–359.

    Article  Google Scholar 

  • Tisdall, J.M., 1996. Formation of soil aggregates and accumulation of soil organic matter. In M.R. Carter and B.A. Stewart (eds) “Structure and Organic Matter Storage in Agricultural Soils”, CRC/Lewis Publisher, Boca Raton, Fl: 57–95.

    Google Scholar 

  • Unger, P.W., 1990. Conservation tillage systems. Adv. Soil Sci. 13: 27–68.

    Google Scholar 

  • Unger, P.W. and J.T. Musick, 1990. Ridge tillage for managing irrigation water on the U.S. Southern Great Plains. Soil Tillage Res. 19: 267–282.

    Article  Google Scholar 

  • Williams, B.G., D.J. Greenland, and J.P. Quirk, 1968. Water stability of natural clay aggregates containing polyvinyl alcohol. Aust. J. Soil Res. 6: 59–66.

    Article  CAS  Google Scholar 

  • Wilson, W.S. (ed), 1991. Advances in Soil Organic Matter Research: The Impact of Agriculture and the Environment. Royal Society of Chemistry. Cambridge, U.K., 400 pp.

    Google Scholar 

  • Woomer, P.L., A. Martin, A. Albrecht, D.V.S. Resck, and H.W. Scharpenseal, 1994. The importance and management of soil organic matter in the tropics. In: P.L. Woomer and M.J. Swift (eds) “The Biological Management of Tropical Soil Fertility”, J. Wiley & Sons, Chichester, U.K.: 47–80.

    Google Scholar 

  • Young, A., 1976. Tropical soils and soil survey. Cambridge Univ. Press, Cambridge, 467 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lal, R., Kimble, J. Conservation tillage for carbon sequestration. Nutrient Cycling in Agroecosystems 49, 243–253 (1997). https://doi.org/10.1023/A:1009794514742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009794514742

Navigation