Skip to main content
Log in

Nitrogen retention in wetlands, lakes and rivers

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

As human activities continue to alter the global nitrogen cycle, the ability to predict the impact of increased nitrogen loading to freshwater systems is becoming more and more important. Nitrogen retention is of particular interest because it is through its combined processes (denitrification, nitrogen sedimentation and uptake by aquatic plants) that local and downstream nitrogen concentrations are reduced. Here, we compare the magnitude of nitrogen retention and its components in wetlands, lakes and rivers. We show that wetlands retain the highest proportion of total nitrogen loading, followed by lakes and then rivers. The differences in the proportion of N retained among systems is explained almost entirely by differences in water discharge. Denitrification is the primary mechanism of nitrogen retention, followed by nitrogen sedimentation and uptake by aquatic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahamsson, O. & L. Håkanson, 1998. Modelling seasonal flow variability of European rivers. Ecol. Model. 114: 49–58.

    Google Scholar 

  • Ahlgren, I., F. Sorensson, T. Waara & K. Vrede, 1994. Nitrogen budgets in relation to microbial transformation in lakes. Ambio 23: 367–377.

    Google Scholar 

  • Andersen, J. M., 1974. Nitrogen and phosphorous budgets and the role of sediment in six shallow Danish lakes. Arch. Hydrobiol. 74: 528–550.

    Google Scholar 

  • Andersen, J. M., 1977. Importance of the denitrification process for the rate of degradation of organic matter in lake sediments. In Golterman H. L. (ed.), Interactions Between Sediments and Fresh Water: Proceedings Of An International Symposium Held At Amsterdam, the Netherlands, September 6–10, 1976. Dr W. Junk Publishers, The Hague: 357–362.

    Google Scholar 

  • Benoy, G. & J. Kalff, 1999. Sediment accumulation and Pb burdens in submerged macrophyte beds. Limnol. Oceanogr. 44: 1081–1090.

    Google Scholar 

  • Brinson, M. M., H. D. Bradshaw & E. S. Kane, 1984. Nutrient assimilative capacity of an alluvial floodplain swamp. J. appl. Ecol. 21: 1041–57.

    Google Scholar 

  • Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Wat. Sci. Technol. 35(5): 11–17.

    Google Scholar 

  • Christensen, P. B., L. P. Nielsen, J. Sorensen & N. P. Revsbech, 1990. Denitrification in nitrate-rich streams: diurnal and seasonal variation related to benthic oxygen metabolism. Limnol. Oceanogr. 35: 640–651.

    Google Scholar 

  • Cooper, A. B. & J. G. Cooke, 1984. Nitrate loss and transformation in 2 vegetated hardwater streams. N. Z. J. mar. freshwater Res. 18: 441–450.

    Google Scholar 

  • Devito, K. J., P. J. Dillon & B. D. Lazerte, 1989. Phosphorus and nitrogen retention in five Precambrian shield wetlands. Biogeochemistry 8: 185–204.

    Google Scholar 

  • Dørge, J., 1994. Modelling nitrogen transformations in freshwater wetlands. Estimating nitrogen retention and removal in natural wetlands in relation to their hydrology and nutrient loadings. Ecol. Model. 75/76: 409–420.

    Google Scholar 

  • Downing, J. A. & E. McCauley, 1992. The nitrogen: phosphorus relationship in lakes. Limnol. Oceanogr. 37: 936–945.

    Google Scholar 

  • Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North Ameica: a review and critique of experimental enrichments. Can. J. Fish. aquat. Sci. 47: 1468–1477.

    Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1997. Wetlands and aquatic processes. J. envir. Qual. 26: 905–910.

    Google Scholar 

  • Findlay, D. L., R. E. Heckey, L. L. Hendzel, M. P. Stainton & G.W. Regehr, 1994. Relationship between N2-fixation and heterocyst abundance and its relevance to the nitrogen budget of Lake 227. Can. J. Fish. aquat. Sci. 51: 2254–2266.

    Google Scholar 

  • Fleischer, S. & L. Stibe, 1991. Drainage basin management - reducing river transported nitrogen. Verh. int. Ver. Limnol. 24: 1753–1755.

    Google Scholar 

  • Focht, D. D. & W. Verstraete, 1977. Biochemical ecology of nitri-fication and denitrification. Adv. Microbiol. Ecol. 1: 135–214.

    Google Scholar 

  • Gale, P. M., K. R. Reddy & D. A. Graetz, 1993. Nitrogen removal from reclaimed water applied to constructed and natural wetland microcosms. Wat. Envir. Res. 65: 162–168.

    Google Scholar 

  • Hammer, D. A. & R. L. Knight, 1994. Designing constructed wetlands for nitrogen removal. Wat. Sci. Technol. 29(4): 15–27.

    Google Scholar 

  • Hill, A. R., 1979. Denitrification in the nitrogen budget of a river ecosystem. Nature 281: 291–292.

    Google Scholar 

  • Hill, B. H., 1986. The role of aquatic macrophytes in nutrient flow regulation in lotic ecosystems. In Isom, G. G. (ed.), Rationale for Sampling and Interpretation of Ecological Data in the Assessment of Freshwater Ecosystems, ASTM STP 894. American Society for Testing and Materials, Philadelphia: 157–167.

    Google Scholar 

  • Howard-Williams, C., 1983. Wetlands and watershed management: the role of aquatic vegetation. J. Limnol. Soc. sth. Afr. 9: 54–62.

    Google Scholar 

  • Jansson, M., R. Andersson, H. Berggren & L. Leonardson, 1994a. Wetlands and lakes as nitrogen traps. Ambio 23: 320–325.

    Google Scholar 

  • Jansson, M., L. Leonardson & J. Fejes, 1994b. Denitrification and nitrogen retention in a farmland stream in southern Sweden. Ambio 23: 326–331.

    Google Scholar 

  • Jensen, J. P., P. Kristensen & E. Jeppesen, 1990. Relationships between nitrogen loading and in-lake nitrogen concentrations in shallow Danish lakes. Verh. int. Ver. Limnol. 24: 201–204.

    Google Scholar 

  • Jensen, J. P., E. Jeppesen, P. Kristensen, P. B. Christensen & M. Søndergaard, 1992. Nitrogen loss and denitrification as studied in relation to reductions in nitrogen loading in a shallow hypertrophic lake (Lake Søbygård, Denmark). Int. Rev. ges. Hydrobiol. 77: 29–42.

    Google Scholar 

  • Kaushik, N. K., J. B. Robinson, P. Sain, H. R. Whiteley & W. Stammers, 1975. A quantitative study of nitrogen loss from water of a small, spring-fed stream. Proceeding of the 10th Canadian Symposium 1975 Water Pollution Research Canada: 110–117.

  • Kelly, C. A., J. W. M. Rudd & D. W. Schindler, 1990. Acidification by nitric acid-future considerations. Wat. Air Soil Pollut. 50: 49–61.

    Google Scholar 

  • Knight, R. L., R.W. Ruble, R. H. Kadlec & S. Reed, 1993.Wetlands for wastewater treatment: performance database. In Moshiri, G. A. (ed.), Constructed Wetlands for Water Quality Improvement. Lewis Publishers, Michigan: 35–58.

    Google Scholar 

  • Knowles, R., 1982. Denitrification. Microbiol. Rev. 46: 43–70.

    Google Scholar 

  • Mengis, M., R. Gachter & B. Wehrli, 1997. Nitrogen elimination in two deep eutrophic lakes. Limnol. Oceanogr. 42: 1530–1543.

    Google Scholar 

  • Messer, J. & P. L. Brezonik, 1983. Comparison of denitrification rate estimation techniques in a large, shallow lake. Wat. Res. 17: 631–640.

    Google Scholar 

  • Mitsch, W. J. & J. G. Gosselink, 1993. Wetlands (2nd edn). Van Nostrand Reinhold, New York. 722 pp.

    Google Scholar 

  • Moffat, A. S., 1998. Global nitrogen overload problem grows critical. Science 279: 988–989.

    Google Scholar 

  • Molot, L. A. & P. J. Dillon, 1993. Nitrogen mass balances and denitrification rates in central Ontario lakes. Biogeochemistry 20: 195–212.

    Google Scholar 

  • Nichols, D. S., 1983. Capacity of natural wetlands to remove nutrients from wastewater. J.Wat. Poll. Contr. Fed. 55: 495–505.

    Google Scholar 

  • Olsen, K. R. & F. Anderson, 1994. Nutrient cycling in shallow, oligotrophic Lake Kvie, Denmark. Hydrobiologia 275/276: 255–265.

    Google Scholar 

  • Owens, M., J. Garland, I. Hart & G. Wood, 1972. Nutrient budgets in rivers. Symp. zool. Soc. Lond. 29: 21–40.

    Google Scholar 

  • Reddy, K. R.,W. H. Patrick, Jr. & C.W. Lindau, 1989. Nitrificationdenitrification at the plant root-sediment interface in wetlands. Limnol. Oceanogr. 34: 1004–1013.

    Google Scholar 

  • Reddy, K. R. & E. M. D'Angelo, 1994. Soil processes regulating water quality in wetlands. In Mitsch, W. J. (ed.), Global Wetlands: Old World and New. Elsevier Science, B.V., New York: 309–324.

    Google Scholar 

  • Rudd, J. W. M., C. A. Kelly, D. W. Schindler & M. A. Turner, 1990. A comparison of the acidification efficiencies of nitric and sulfuric acids by two whole-lake addition experiments. Limnol. Oceanogr. 35: 663–679.

    Google Scholar 

  • Ryder, R. A. & J. Pesendorfer, 1989. Large rivers are more than flowing lakes: a comparative review. In Dodge, D. P. (ed.), Proceedings of the International Large River Symposium. Can. Spec. Publ. Fish aquat. Sci. 106: 65–85.

  • Sand-Jensen, K., 1998. Influence of submerged macrophyes on sediment composition and near-bed flow in lowland streams. Freshwat. Biol. 39: 663–679.

    Google Scholar 

  • Seitzinger, S. P., 1986. The effect of pH on the release of phophorous from the Potomac River sediments. Academy of Natural Sciences of Philadelphia, Division of Environmental Research, Report No. 86–8F, Philadephia: 50 pp.

  • Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol. Oceanogr. 33: 702–724.

    Google Scholar 

  • Smith, S. V., S. Serruya, Y. Geifman & T. Berman, 1989. Internal sources and sinks of water, P, N, Ca, and Cl in Lake Kinnert, Israel. Limnol. Oceanogr. 34: 1202–1213.

    Google Scholar 

  • Svendsen, L. M. & B. Kronvang, 1993. Retention of nitrogen and phosphorus in a Danish lowland river system: implications for the export from the watershed. Hydrobiologia 251: 123–135.

    Google Scholar 

  • Van Oostrom, A. J., 1995. Nitrogen removal in constructed wetlands treating nitrified meat processing effluent. Wat. Sci. Technol. 32: 137–147.

    Google Scholar 

  • Verry, E. S. & D. R. Timmons, 1982. Waterbourne nutrient flow through an upland-peatland watershed inMinnesota. Ecology 63: 1456–1467.

    Google Scholar 

  • Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & D. G. Tilman, 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7: 737–750.

    Google Scholar 

  • Vollenweider, R. A., 1971. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. Organisation for economic co-operation and development, Paris, France: 61 pp.

    Google Scholar 

  • Weisner, S. E. B., P G. Eriksson, W. Granell & L. Leonardson, 1994. Influence of macrophytes on nitrate removal in wetlands. Ambio 23: 363–366.

    Google Scholar 

  • Windolf, J., E. Jeppesen, J. P. Jensen & P. Kristensen, 1996. Modelling of seasonal variation in nitrogen retention and in-lake concentration: a four-year mass balance study in 16 shallow Danish lakes. Biogeochemistry 33: 25–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saunders, D., Kalff, J. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 443, 205–212 (2001). https://doi.org/10.1023/A:1017506914063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017506914063

Navigation