Skip to main content
Log in

Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and real-time PCR techniques

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Molecular methods were used to study variation in the taxonomic structure of bacterial, archaeal, and fungal communities in soil samples taken along a salinity gradient from a solonchak in the vicinity of Lake Akkol’ (Shingirlau, Kazakhstan). Soils from arable fields located 195 km from the solonchak served as the control. Total DNA was isolated from every sample and analyzed by T-RFLP and real-time PCR. Salinization was found to be the main ecological factor determining the structure of soil microbial community in the study region. The values of Simpson’s index characterizing the diversity of this community proved to be similar in all the samples, which, however, significantly differed in the taxonomic composition of microorganisms. A significantly increased content of archaea was revealed in the sample with the highest salinity. The results of this study show that the structure of soil microbial community reflects specific features of a given soil and can be used as an indicator of its ecological state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. P. Aidarov and E. I. Pankova, “Salt Accumulation and Its Control on the Plains of Central Asia,” Pochvovedenie, No. 6, 676–684 (2007) [Eur. Soil Sci. 40 (6), 608–615 (2007)].

  2. E. E. Andronov, S. N. Petrova, E. P. Chizhevskaya, et al., “Influence of Introducing the Genetically Modified Strain Sinorhizobium meliloti ACH-5 on the Structure of the Soil Microbial Community,” Mikrobiologiya 78(4), 525–534 (2009) [Microbiology 78 (4), 474–482 (2009)].

    Google Scholar 

  3. L. A. Vorob’eva, Chemical Analysis of Soils (Izd. Mosk. Gos. Univ., Moscow, 1998) [in Russian].

    Google Scholar 

  4. M. E. Kotenko and T. A. Zubkova, “The Impact of Salt-Affected Soils on the State of Microbial Community,” Vestn. Kazansk. Gos. Agrarn. Univ. 7(1), 138–141 (2008).

    Google Scholar 

  5. E. I. Pankova, L. A. Vorob’eva, A. F. Novikova, et al., Salt-Affected Soils of Russia (IKTs-Akademkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  6. S. N. Petrova, E. E. Andronov, A. G. Pinaev, and E. V. Pershina, “Prospects for Using the Methods of Molecular Genetic Analysis in Soil Ecology,” Vestn. Orlovsk. Gos. Agrarn. Univ., 26(5), 45–48 (2010).

    Google Scholar 

  7. A. Bachar, A. Ashraf, M. Ines, et al., “Soil Microbial Abundance and Diversity Along a Low Precipitation Gradient,” Microb. Ecol. 60(2), 453–461 (2010).

    Article  Google Scholar 

  8. T. M. Caton, I. R. Caton, L. R. Witte, and M. A. Schneegurt, “Archaeal Diversity at the Great Salt Plains of Oklahoma Described by Cultivation and Molecular Analyses,” Microb. Ecol. 58(3), 519–528 (2009).

    Article  Google Scholar 

  9. A. Chen, K. Ueda, Y. Sekiguchi, et al., “Molecular Detection and Direct Enumeration of Methanogenic Archaea and Methanotrophic Bacteria in Domestic Solid Waste Landfill Soils,” Biotechnol. Lett. 25(18), 1563–1569 (2004).

    Article  Google Scholar 

  10. R. Daniel, “The Metagenomics of Soil,” Nature Rev. Microbiol., No. 3, 470–478 (2005).

  11. C. Demergasso, E. O. Casamayor, G. Chong, et al., “Distribution of Prokaryotic Genetic Diversity in Athalassohaline Lakes of the Atacama Desert, Northern Chile,” FEMS Microbiol. Ecol. 1(48), 57–69 (2004).

    Article  Google Scholar 

  12. N. Fierer and R. B. Jackson, “The Diversity and Biogeography of Soil Bacterial Communities,” Proc. Natl. Acad. Sci. USA 103(3), 626–631 (2006).

    Article  Google Scholar 

  13. N. Fierer, J. A. Jackson, R. Vilgalys, and R. B. Jackson, “Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR Assays,” Appl. Environ. Microbiol. 71, 4117–4120 (2005).

    Article  Google Scholar 

  14. A. Ganley and T. Kobayashi, “Total rDNA Repeat Variation Revealed by Whole-Genome Shotgun Sequence Data,” Genome Res., No. 17, 184–191 (2007).

    Google Scholar 

  15. R. C. Garber, B. G. Turgeon, E. U. Selker, and O. C. Yoder, “Organization of Ribosomal RNA Genes in the Fungus Cochliobolus heterostrophus,” Curr. Genet. 14(6), 573–582 (1988).

    Article  Google Scholar 

  16. E. B. Hollister, A. S. Engledow, A. J. M. Hammett, et al., “Shifts in Microbial Community Structure along an Ecological Gradient of Hypersaline Soils and Sediments,” The ISME J., No. 4, 829–838 (2010).

  17. O. Hammer, D. A. T. Harper, and P. D. Ryan, “PAST: Paleontological Statistics Software Package for Education and Data Analysis,” Paleontol. Electronica 4(9), 1–9 (2001).

    Google Scholar 

  18. J. Handelsman, “Metagenomics: Application of Genomics to Uncultured Microorganisms,” Microbiol. Molec. Biol. Rev. 68(4), 669–685 (2004).

    Article  Google Scholar 

  19. S. Höppener-Ogawa, J. H. J. Leveau, W. Smant, et al., “Specific Detection and Real-Time PCR Quantification of Potentially Mycophagous Bacteria Belonging to the Genus Collimonas in Different Soil Ecosystems,” Appl. Environ. Microbiol. 73(13), 4191–4197 (2007).

    Article  Google Scholar 

  20. J. B. Hughes Martiny, B. J. M. Bohannan, J. H. Brown, et al., “Microbial Biogeography: Putting Microorganisms on the Map,” Nature Rev. Microbiol., No. 4, 102–112 (2006).

    Google Scholar 

  21. M. A. Innis and D. H. Gelfand, PCR Protocols: A Guide to Methods and Applications (Academic, San Diego, 1990).

    Google Scholar 

  22. D. J. Lane, “16S/23S rRNA Sequencing,” in Nucleic Acid Techniques in Bacterial Systematics, Ed. by E. Stackebrandt and M. Goodfellow (John Wiley and Sons, New York, 1991).

    Google Scholar 

  23. Z. M. Lee, C. Bussema III, and Th. M. Schmidt, “RrnDB: Documenting the Number of rRNA and tRNA Genes in Bacteria and Archaea,” Nucleic Acids Res. 37(1), D489–D493.

  24. C. A. Lozupone and R. Knight, “Global Patterns in Bacterial Diversity,” Proc. Natl. Acad. Sci. USA 104(27), 11436–11440 (2007).

    Article  Google Scholar 

  25. G. Malferrari, E. Monferini, P. DeBlasio, et al., “High-Quality Genomic DNA from Human Whole Blood and Mononuclear Cells,” BioTechniques 33(6), 1228–1230 (2002).

    Google Scholar 

  26. F. C. Michel Jr. and S. M. Sciarini, “Fragsort 4.0, a Tool for Multiple Restriction Digestion T-RFLP Analysis Based on in Silico Amplification and Digestion of 16S ribosomal RNA Gene Sequences,” Proc. 10th Int. Symp. Microbial Ecol. (ISME-10) (Cancun, Mexico, 2004).

    Google Scholar 

  27. D. J. Mohamed and J. B. Martiny, “Patterns of Fungal Diversity and Composition along a Salinity Gradient,” ISME J. 3 (5), 379–388 (2011).

    Google Scholar 

  28. S. Moskalenko, S. Chabelskaya, M. Philippe, et al., “Viable Nonsense Mutants for the Essential Gene SUP45 of Saccharomyces serevisiae,” BMC Molecul. Biol. 2(4), 1–13 (2003).

    Google Scholar 

  29. M. A. Munson, D. B. Nedwell, and T. M. Embley, “Phylogenetic Diversity of Archaea in Sediment Samples from a Coastal Salt Marsh,” Appl. Environ. Microbiol. 63(12), 4729–4733 (1997).

    Google Scholar 

  30. M. A. O’Malley, “The Nineteenth Century Roots of’ Everything Is Everywhere’,” Nature Rev. Microbiol., No. 5, 647–651 (2007).

  31. A. Oren, “The Ecology of the Extremely Halophilic Archaea,” FEMS Microbiol. Rev. 13(4), 415–439 (1994).

    Article  Google Scholar 

  32. E. Pershina and E. Andronov, “Looking for the Better Way in Studying Soil Microbial Diversity,” Materials of Adaptation to Climate Change in the Baltic Sea Region: Contributions from Plant and Microbial Biotechnology (Mikkeli, Finland, 2010).

    Google Scholar 

  33. L. J. Rothschild and R. L. Mancinelli, “Life in Extreme Environments,” Nature, No. 409, 1092–1101 (2001).

  34. J. Rousk, E. Bååth, Ph. C. Brookes, et al., “Soil Bacterial and Fungal Communities across a pH Gradient in an Arable Soil,” The ISME J, No. 4, 1340–1351 (2010).

  35. B. K. Singh, L. Nazaries, S. Munro, et al., “Use of Multiplex Terminal Restriction Fragment Length Polymorphism for Rapid and Simultaneous Analysis of Different Components of the Soil Microbial Community,” Appl. and Environ. Microbiol. 72(11), 7278–7285 (2006).

    Article  Google Scholar 

  36. R. Sung-Keun, S. Hong, J. Bae, et al., “Estimation of Distribution of a Commensal Thermophile in Soil by Competitive Quantitative PCR and Terminal Restriction Fragment Length Polymorphism Analysis,” J. Microbiol. Biotechnol 11(6), 940–945 (2001).

    Google Scholar 

  37. D. Tsuchiya and M. Taga, “Application of Fibre-FISH (Fluorescence in situ Hybridization) to Filamentous Fungi: Visualization of the rRNA Gene Cluster of the Ascomycete Cochliobolus heterostrophus,” Microbiology, No. 147, 1183–1187 (2001).

  38. D. A. Walsh, R. T. Papke, and F. W. Doolittle, “Archaeal Diversity along a Soil Salinity Gradient Prone to Disturbance,” Environ. Microbiol. 7(10), 1655–1666 (2005).

    Google Scholar 

  39. J. Wendland, R. Pöhlmann, F. Dietrich, et al., “Compact Organization of rRNA Genes in the Filamentous Fungus Ashbya gossypii,” Curr. Genet. 35(6), 618–625.

  40. Y. Yu, Ch. Lee, J. Kim, and S. Hwang, “Group-Specific Primer and Probe Sets to Detect Methanogenic Communities Using Quantitative Real-Time Polymerase Chain Reaction,” Biotechnol. Bioeng. 89(6), 670–679 (2005).

    Article  Google Scholar 

  41. D. G. Zvyagintsev, G. M. Zenova, and G. V. Oborotov, “Moderately Haloalkaliphilic Actinomycetes in Salt-Affected Soils,” Eur. Soil Sci. 42(13), 1515–1520 (2009).

    Article  Google Scholar 

  42. rrnDB [http://ribosome.mmg.msu.edu/rrndb/index.php]

  43. TERRAGENOME [http://www.terragenome.org/]

  44. GenoSol [http://www2.dijon.inra.fr/plateforme-genosol/]

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.E. Andronov, S.N. Petrova, A.G. Pinaev, E.V. Pershina, S.Zh. Rakhimgalieva, K.M. Akhmedenov, A.V. Gorobets, N.Kh. Sergaliev, 2012, published in Pochvovedenie, 2012, No. 2, pp. 173–183.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andronov, E.E., Petrova, S.N., Pinaev, A.G. et al. Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and real-time PCR techniques. Eurasian Soil Sc. 45, 147–156 (2012). https://doi.org/10.1134/S1064229312020044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229312020044

Keywords

Navigation