Effects of calibration on L-THIA GIS runoff and pollutant estimation

J Environ Manage. 2006 Jan;78(1):35-43. doi: 10.1016/j.jenvman.2005.03.014. Epub 2005 Aug 19.

Abstract

Urbanization can result in alteration of a watershed's hydrologic response and water quality. To simulate hydrologic and water quality impacts of land use changes, the Long-Term Hydrologic Impact Assessment (L-THIA) system has been used. The L-THIA system estimates pollutant loading based on direct runoff quantity and land use based pollutant coefficients. The accurate estimation of direct runoff is important in assessing water quality impacts of land use changes. An automated program was developed to calibrate the L-THIA model using the millions of curve number (CN) combinations associated with land uses and hydrologic soil groups. L-THIA calibration for the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana was performed using land use data for 1991 and daily rainfall data for six months of 1991 (January 1-June 30) to minimize errors associated with use of different temporal land use data and rainfall data. For the calibration period, the Nash-Sutcliffe coefficient was 0.60 for estimated and observed direct runoff. The calibrated CN values were used for validation of the model for the same year (July 1-December 31), and the Nash-Sutcliffe coefficient was 0.60 for estimated and observed direct runoff. The Nash-Sutcliffe coefficient was 0.52 for January 1, 1991 to December 31, 1991 using uncalibrated CN values. As shown in this study, the use of better input parameters for the L-THIA model can improve accuracy. The effects on direct runoff and pollutant estimation of the calibrated CN values in the L-THIA model were investigated for the LEC. Following calibration, the estimated average annual direct runoff for the LEC watershed increased by 34%, total nitrogen by 24%, total phosphorus by 22%, and total lead by 43%. This study demonstrates that the L-THIA model should be calibrated and validated prior to application in a particular watershed to more accurately assess the effects of land use changes on hydrology and water quality.

MeSH terms

  • Calibration
  • Environment
  • Geographic Information Systems
  • Indiana
  • Lead / analysis
  • Models, Theoretical*
  • Nitrogen / analysis
  • Phosphorus / analysis
  • Rain
  • Reproducibility of Results
  • Water Movements*
  • Water Pollutants, Chemical / analysis*
  • Water Supply

Substances

  • Water Pollutants, Chemical
  • Phosphorus
  • Lead
  • Nitrogen