Enhanced degradation of atrazine under field conditions correlates with a loss of weed control in the glasshouse

Pest Manag Sci. 2007 Jan;63(1):23-31. doi: 10.1002/ps.1304.

Abstract

Enhanced degradation of atrazine has been reported in the literature, indicating the potential for reduced residual weed control with this herbicide. Experiments were conducted to determine the field dissipation of atrazine in three cropping systems: continuous Zea mays L. (CC) receiving atrazine applications each year, Gossypium hirsutum L.-Z. mays rotation (CCR) receiving applications of atrazine once every 2 years and a no atrazine history soil (NAH). Subsequent laboratory and greenhouse experiments were conducted with soil collected from these cropping systems to determine atrazine degradation, mineralization and residual weed control. Field dissipation of atrazine followed first-order kinetics, and calculated half-life values for atrazine combined over 2003 and 2005 increased in the order of CC (9 d) = CCR (10 d) < NAH (17 d). Greenhouse studies confirmed that the persistence of atrazine was approximately twofold greater in NAH soil than in CC or CCR soil. Biometer flask mineralization studies suggested that enhanced degradation of atrazine was due to rapid catabolism of the s-triazine ring. Glasshouse efficacy studies revealed a loss of residual weed control in CC and CCR soil compared with NAH soil. These data indicate that, under typical Mississippi Delta field conditions and agronomic practices, the persistence of atrazine may be reduced by at least 50% if the herbicide is applied more than once every 24 months. Glasshouse studies suggest that under these conditions a loss of residual weed control is possible.

MeSH terms

  • Agriculture / methods
  • Atrazine / analysis*
  • Herbicides / analysis*
  • Pesticide Residues / analysis*
  • Soil / analysis*

Substances

  • Herbicides
  • Pesticide Residues
  • Soil
  • Atrazine