Sorption kinetics and equilibria of organic pesticides in carbonatic soils from South Florida

J Environ Qual. 2006 Jan 5;35(1):268-76. doi: 10.2134/jeq2005.0140. Print 2006 Jan-Feb.

Abstract

A batch reactor was used to determine sorption kinetic parameters (k2, F, and K*) and the equilibrium sorption coefficient (K). The two-site nonequilibrium (TSNE) batch sorption kinetics model was used to calculate the kinetic parameters. Two probe organic pesticides, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were studied using three carbonatic soils from South Florida (Chekika, Perrine, and Krome), one noncarbonatic soil from Iowa (Webster), and one organic soil (Lauderhill) from South Florida. Carbonatic soils contained more than 600 g kg(-1) CaCO3. Sorption is initially very fast up to 3 h and then slowly reaches equilibrium. All soil-chemical combinations reached sorption equilibrium after about 24 h and all sorption isotherms were linear. The sorption kinetics data were well described by the TSNE model for all soil-chemical combinations except for the marl soil data (Perrine-Atrazine), which were better described by the one-site nonequilibrium (OSNE) model. Diuron, with higher K, undergoes slower sorption kinetics than atrazine. The Lauderhill soil containing organic carbon (OC) of 450 g kg(-1) exhibited slowest sorption kinetics for both pesticides. An inverse relationship between k3 and K was observed for atrazine and diuron separately in Chekika, Webster, and Lauderhill soils but not in Perrine and Krome soils. The sorption kinetic parameters were used to distinguish the sorption behavior between atrazine and diuron and to identify differences between soils. Normalizing the sorption coefficient (K) to OC showed that atrazine and diuron had K oc values in carbonatic soils that were a third of reported literature values for noncarbonatic soils. Using existing literature K oc values in solute transport models will most likely underestimate the mobility of atrazine, diuron, and other neutral organic chemicals in carbonatic soils.

MeSH terms

  • Carbonates / analysis*
  • Kinetics
  • Organic Chemicals / analysis*
  • Pesticides / analysis*
  • Soil Pollutants / analysis*

Substances

  • Carbonates
  • Organic Chemicals
  • Pesticides
  • Soil Pollutants